(limx→1) x-1/3√x-1,求极限,请问详细过程。
2个回答
展开全部
(limx→1) x-1/[x^(1/3)-1],求极限,请问详细过程。
(limx→1) x-1/[x^(1/3)-1]
分母有理化,分子分母同乘以 x^(2/3)+x^(1/3)+1
=(limx→1) [(x-1)(x^(2/3)+x^(1/3)+1)]/[x^(1/3)-1][x^(2/3)+x^(1/3)+1]
=(limx→1) [(x-1)(x^(2/3)+x^(1/3)+1)]/(x-1)
=(limx→1) (x^(2/3)+x^(1/3)+1)
=3
(limx→1) x-1/[x^(1/3)-1]
分母有理化,分子分母同乘以 x^(2/3)+x^(1/3)+1
=(limx→1) [(x-1)(x^(2/3)+x^(1/3)+1)]/[x^(1/3)-1][x^(2/3)+x^(1/3)+1]
=(limx→1) [(x-1)(x^(2/3)+x^(1/3)+1)]/(x-1)
=(limx→1) (x^(2/3)+x^(1/3)+1)
=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询