cosx的三次方的不定积分是多少?

 我来答
一个人郭芮
高粉答主

2022-11-03 · GR专注于各种数学解题
一个人郭芮
采纳数:37942 获赞数:84704

向TA提问 私信TA
展开全部
如果你的意思是
∫cos³x dx
使用凑积分可以得到
等于∫cos²x dsinx
=∫1-sin²x dsinx
于是积分得到
sinx -1/3 *sin³x +C,C为常数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
黄先生
2024-12-27 广告
北京蓝宝、广州宏控、广州迈拓维矩、广州快捷等。在性价比方面,选择广州迈拓维矩矩阵切换器,性价比较高,6道测试工序,质量有保证。有以下优点:1.所有产品都是模块化设计,方便维护。2.矩阵都有输出长线驱动的设计,即插即用,不需要设置。3.软硬件... 点击进入详情页
本回答由黄先生提供
热点那些事儿
高粉答主

2022-11-07 · 关注我不会让你失望
知道大有可为答主
回答量:8668
采纳率:100%
帮助的人:210万
展开全部

cosx的三次方的不定积分为sinx-1/3*(sinx)^3+C。

解:∫ (cosx)^3 dx

=∫ (cosx)^2*cosx dx

=∫ (cosx)^2dsinx

=∫(1-(sinx)^2) dsinx

=∫1 dsinx-∫(sinx)^2 dsinx

=sinx-1/3*(sinx)^3+C

即cosx的三次方的不定积分为sinx-1/3*(sinx)^3+C。

不定积分的运算法则

(1)函数的和(差)的不定积分等于各个函数的不定积分的和(差)。即:

∫[a(x)±b(x)]dx=∫a(x)dx±∫b(x)dx

(2)求不定积分时,被积函数中的常数因子可以提到积分号外面来。即:

∫k*a(x)dx=k*∫a(x)dx

不定积分应用的公式

∫adx=ax+C、∫3x^2dx=x^3+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式