1.设a,b为实数,那么:a的平方+ab+b的平方-a-2b的最小值是??

 我来答
可杰17
2022-10-31 · TA获得超过950个赞
知道小有建树答主
回答量:309
采纳率:100%
帮助的人:56.4万
展开全部
a²-ab+a+b²-2b
=a²-a(b-1)+(b²-2b+1)-1
=a²-a(b-1)+(b-1)²-1
=1/4a²-a(b-1)+(b-1)²+3/4a²-1
=[1/2a-(b-1)]²+3/4a²-1
可知,[1/2a-(b-1)]²≥0、3/4a²≥0,
所以上式的最小值当[1/2a-(b-1)]²=0和3/4a²=0时取得,为-1;
即:
[1/2a-(b-1)]²=0
3/4a²=0
解之得:
a=0
b=1
因此,当a=0、b=1时,原式获得最小值为-1.,9,Y=[a+(b-1)/2]^2 + 3[(b-1)/2]^2-1
所以Y最小值=-1,1,十五级的全是回答这个问题的啊?? 我晕了,1,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式