人教版八年级上册数学课件
形象有趣的课件,使得课堂不再枯燥无味。虽然在课堂教学中起主导作用的是教师,课件只是起辅助教学的作用,但并不代表可以轻视,制作课件需要注意的问题。下面我为大家带来人教版八年级上册数学课件,仅供参考,希望能够帮到大家。
人教版八年级上册数学课件
第一课时 综合复习
一、知识结构
二、重要知识与规律总结
(一)概念
1、分式: (A、B为整式,B≠0)
2、最简公分母:各分母所有因式的最高次幂的积。
3、分式方程:分母中含有未知数的方程。
(二)性质
1、分式基本性质: (M是不等于零的整式)
2、幂的性质:
零指数幂: =1(a ≠0)
负整指数幂: (a≠0,n为正整数)
科学记数法:a × ,1≤| a |<10,n是一个整数。
(三)分式运算法则
分式乘法:将分子、分母分别相乘,即
分式除法:将除式的分子、分母颠倒位置后,与被除式相乘,即
分式的加减:(1)同分母分式相加减: ;
(2)异分母分式相加减:
分式乘方: (b≠0) 分式开方: (a≥0,b>0)
(四)分式方程解法
1、解题思想:分式方程转化为整式方程。
2、转化方法:去分母(特殊的用换元法)。
3、转化关键:正确找出最简公分母。
4、注意点:注意验根。
三、学习方法点拨
1、两个整数不能整除时,出现了分数;类似地,两个分式不能整除时,就出现了分式。因此,整式的除法是引入分式概念的基础。
2、分式的基本性质及分式的运算与分数的情形类似,因而在学习过程中,要注意不断地与分数的情形进行类比,以加深对新知识的理解。
3、解分式方程的思想是把含有未知数的分母去掉,从而将分式方程转化为整式方程来解,这时可能会出现增根,必须进行检验。学习时,要理解增根产生的原因,认识到检验的必要性,并会进行检验。
4、由于引进了零指数幂和负整指数幂,绝对值较小的数也可以用科学记数法来表示。
四、布置作业:课本第16章复习题。
第二课时 专题讲解
一、分式运算中的常用技巧
分式的运算以分式的概念、分式的基本性质、运算法则为基础,其中分式的加减运算是难点,解决这一难点的关键是根据题目的特点恰当的通分,并以整式变形、因式分解为工具进行计算。分式运算既突出了代数式的运算、变换的基础知识和基本技能,又注重了数学的思想方法,在历年考试中是必考的重点内容之一,若能根据特点灵活选择解法,将会收到事半功倍的效果。
1、约分求值:分母或分子是多项式时,先把分子、分母因式分解后约分求值。
计算:
解:原式=
2、分步通分,逐步计算:以下题的解法加以说明,该题采用“分步通分法”,先将前两个分式通分,所得结果再与后面的分式通分,达到化繁为简。若一次性全面通分,计算量将非常大。我们在解题时既要看到局部特征,又要有全面考虑。
计算:
解:原式=
3、合理搭配,分组通分:分组通分,可以降低难度,见下题。
已知x=1+ ,那么 =________________。
解析:先将第一、三项通分,然后再与第二项计算,最后代入求值。
二、分式求值中的常用技巧
分式求值在中考中出现频率较高且方法灵活,有时出现条件或所求代数式不易化简变形,当把代数式的分子、分母颠倒后,变形就容易了,这样的问题通常采用倒数法(把分子、分母倒过来)求值,见例1。
例1、已知 ,求 的值。
解:∵ ,∴x≠0,∴ ,即 。
∴ ,∴ = 。
2、活用公式变形求值:若能对公式进行熟练地变形运用,可给解题带来极大方便,见例2。
例2、已知x2-5x+1=0,求 的值。
解:由x2-5x+1=0,知x≠0,由此得 。
∴
3、设k求值法(也可叫参数法):当已知条件以连等式出现时,可用设k法解题较简便,见例3。
例3、已知: ,求 的值。
解:设 =k,∴b+c=ak,c+a=bk,a+b=ck。
∴b+c+c+a+a+b=ak+bk+ck,
∴2(a+b+c)= k (a+b+c),(a+b+c)(2-k) =0
即k=2或a+b+c=0,代入到 =k中。
∴原式= 。即原式= 或原式=-1。
4、整体代换法:在计算代数式求值问题时,有时可采用整体代入法——即将条件等式(或变形后的条件式)整体代入求值,见例4、例5。
例4、已知 , , ,求 的值。
解:∵ , , ,
∴ ,∴ = 。
∴ 。
例5、已知a+b=-8,ab=6,化简 _________________。
解:∵a+b=-8,ab=6,∴a<0且b<0。
∴原式=
三、布置作业
课本第15章复习题。