人教版八年级上册数学课件

 我来答
刚阳文化
2022-08-31 · TA获得超过1万个赞
知道大有可为答主
回答量:2199
采纳率:100%
帮助的人:133万
展开全部

  形象有趣的课件,使得课堂不再枯燥无味。虽然在课堂教学中起主导作用的是教师,课件只是起辅助教学的作用,但并不代表可以轻视,制作课件需要注意的问题。下面我为大家带来人教版八年级上册数学课件,仅供参考,希望能够帮到大家。

  人教版八年级上册数学课件

  第一课时 综合复习

  一、知识结构

  二、重要知识与规律总结

  (一)概念

  1、分式: (A、B为整式,B≠0)

  2、最简公分母:各分母所有因式的最高次幂的积。

  3、分式方程:分母中含有未知数的方程。

  (二)性质

  1、分式基本性质: (M是不等于零的整式)

  2、幂的性质:

  零指数幂: =1(a ≠0)

  负整指数幂: (a≠0,n为正整数)

  科学记数法:a × ,1≤| a |<10,n是一个整数。

  (三)分式运算法则

  分式乘法:将分子、分母分别相乘,即

  分式除法:将除式的分子、分母颠倒位置后,与被除式相乘,即

  分式的加减:(1)同分母分式相加减: ;

  (2)异分母分式相加减:

  分式乘方: (b≠0) 分式开方: (a≥0,b>0)

  (四)分式方程解法

  1、解题思想:分式方程转化为整式方程。

  2、转化方法:去分母(特殊的用换元法)。

  3、转化关键:正确找出最简公分母。

  4、注意点:注意验根。

  三、学习方法点拨

  1、两个整数不能整除时,出现了分数;类似地,两个分式不能整除时,就出现了分式。因此,整式的除法是引入分式概念的基础。

  2、分式的基本性质及分式的运算与分数的情形类似,因而在学习过程中,要注意不断地与分数的情形进行类比,以加深对新知识的理解。

  3、解分式方程的思想是把含有未知数的分母去掉,从而将分式方程转化为整式方程来解,这时可能会出现增根,必须进行检验。学习时,要理解增根产生的原因,认识到检验的必要性,并会进行检验。

  4、由于引进了零指数幂和负整指数幂,绝对值较小的数也可以用科学记数法来表示。

  四、布置作业:课本第16章复习题。

  第二课时 专题讲解

  一、分式运算中的常用技巧

  分式的运算以分式的概念、分式的基本性质、运算法则为基础,其中分式的加减运算是难点,解决这一难点的关键是根据题目的特点恰当的通分,并以整式变形、因式分解为工具进行计算。分式运算既突出了代数式的运算、变换的基础知识和基本技能,又注重了数学的思想方法,在历年考试中是必考的重点内容之一,若能根据特点灵活选择解法,将会收到事半功倍的效果。

  1、约分求值:分母或分子是多项式时,先把分子、分母因式分解后约分求值。

  计算:

  解:原式=

  2、分步通分,逐步计算:以下题的解法加以说明,该题采用“分步通分法”,先将前两个分式通分,所得结果再与后面的分式通分,达到化繁为简。若一次性全面通分,计算量将非常大。我们在解题时既要看到局部特征,又要有全面考虑。

  计算:

  解:原式=

  3、合理搭配,分组通分:分组通分,可以降低难度,见下题。

  已知x=1+ ,那么 =________________。

  解析:先将第一、三项通分,然后再与第二项计算,最后代入求值。

  二、分式求值中的常用技巧

  分式求值在中考中出现频率较高且方法灵活,有时出现条件或所求代数式不易化简变形,当把代数式的分子、分母颠倒后,变形就容易了,这样的问题通常采用倒数法(把分子、分母倒过来)求值,见例1。

  例1、已知 ,求 的值。

  解:∵ ,∴x≠0,∴ ,即 。

  ∴ ,∴ = 。

  2、活用公式变形求值:若能对公式进行熟练地变形运用,可给解题带来极大方便,见例2。

  例2、已知x2-5x+1=0,求 的值。

  解:由x2-5x+1=0,知x≠0,由此得 。

  ∴

  3、设k求值法(也可叫参数法):当已知条件以连等式出现时,可用设k法解题较简便,见例3。

  例3、已知: ,求 的值。

  解:设 =k,∴b+c=ak,c+a=bk,a+b=ck。

  ∴b+c+c+a+a+b=ak+bk+ck,

  ∴2(a+b+c)= k (a+b+c),(a+b+c)(2-k) =0

  即k=2或a+b+c=0,代入到 =k中。

  ∴原式= 。即原式= 或原式=-1。

  4、整体代换法:在计算代数式求值问题时,有时可采用整体代入法——即将条件等式(或变形后的条件式)整体代入求值,见例4、例5。

  例4、已知 , , ,求 的值。

  解:∵ , , ,

  ∴ ,∴ = 。

  ∴ 。

  例5、已知a+b=-8,ab=6,化简 _________________。

  解:∵a+b=-8,ab=6,∴a<0且b<0。

  ∴原式=

  三、布置作业

  课本第15章复习题。


已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式