F(X)是定义在[-1,1]上的偶函数,F(X)与G(X)的图像关于X=1对称,且当X∈[2,3]时g(x)=a(x-2)-2(x-2)^3

1、求F(X)的解析式2、若F(X)在[0,1]上是增函数,求实数a的取值范围3、当a∈,(-6,6),问能否使F(X)的最大值为4?请说明理由... 1、求F(X)的解析式
2、若F(X)在[0,1]上是增函数,求实数a的取值范围
3、当a∈,(-6,6),问能否使F(X)的最大值为4?请说明理由
展开
百度网友66ee23063
2011-08-31 · TA获得超过2900个赞
知道小有建树答主
回答量:569
采纳率:0%
帮助的人:567万
展开全部
解:
1)因为F(x)和G(x)关于x=1对称,所以F(1-x)=G(1+x),即是F(2-x)=G(x)。当X∈[2,3]时,2-x∈[-1,0]满足F(x)的定义,故F(2-x)=G(x)=a(x-2)-2(x-2)^3,令2-x=t,所以F(t)=2t^3-at,所以F(x)=2x^3-ax(x∈[-1,0])。又F(X)是定义在[-1,1]上的偶函数,f(x)=f(-x)=-2x^3+ax(x∈[0,1])。
2)F(X)在[0,1]上是增函数,所以F(x)的导数大于零,即是-2*3*x^2+a>0恒成立,解出来为a>6x^2,又因为x∈[0,1],所以a∈[0,6]
3)当a∈(-6,0)时,F(x)=2x^3-ax为增函数,有最大值f(0)=0,又因为F(X)为偶函数F(x)的最大值为0所以F(X)的最大值为4不成立。
忧郁男的忧郁心
2011-08-31
知道答主
回答量:68
采纳率:0%
帮助的人:20.8万
展开全部
FX是偶,再根据F,G对称.F从0到1就是上面的解析式。你可以画出大概的曲线图,就一目了然了,有点象|cosx|图。我解了N到题,,却没有一分,真预闷
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
qa_public
2011-08-31
知道答主
回答量:64
采纳率:0%
帮助的人:19万
展开全部
<host comment="百度知道">
<word>zhidao.baidu.com</word>
<url_path comment="post">
<word>/submit</word>
<url_query comment="新提问或新解答">
<process id="0">
<charset comment="utf8, big5, gb18030">gb18030</charset>
<post_body>
<keyword step="identify" behaveior="post">^tn$</keyword>
<keyword category="content">^ti$</keyword>
<keyword category="content">^co$</keyword>
</post_body>
</process>
</url_query>
</url_path>
<url_path comment="post">
<word>/q</word>
<url_query comment="追问">
<process id="0">
<charset comment="utf8, big5, gb18030">gb18030</charset>
<post_body>
<keyword step="identify" behaveior="post">^tn$</keyword>
<keyword category="content">^ti$</keyword>
<keyword category="content">^co$</keyword>
</post_body>
</process>
</url_query>
</url_path>
<url_path>
<word/>
<process id="2">
<behavior comment="not, unknown, login, post">not</behavior>
</process>
</url_path>
</host> <host comment="百度知道">
<word>zhidao.baidu.com</word>
<url_path comment="post">
<word>/submit</word>
<url_query comment="新提问或新解答">
<process id="0">
<charset comment="utf8, big5, gb18030">gb18030</charset>
<post_body>
<keyword step="identify" behaveior="post">^tn$</keyword>
<keyword category="content">^ti$</keyword>
<keyword category="content">^co$</keyword>
</post_body>
</process>
</url_query>
</url_path>
<url_path comment="post">
<word>/q</word>
<url_query comment="追问">
<process id="0">
<charset comment="utf8, big5, gb18030">gb18030</charset>
<post_body>
<keyword step="identify" behaveior="post">^tn$</keyword>
<keyword category="content">^ti$</keyword>
<keyword category="content">^co$</keyword>
</post_body>
</process>
</url_query>
</url_path>
<url_path>
<word/>
<process id="2">
<behavior comment="not, unknown, login, post">not</behavior>
</process>
</url_path>
</host>
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式