转动惯量如何计算?
1个回答
展开全部
问题一:转动惯量的计算公式 当回转轴过杆的中点(质心)并垂直于杆时 ;其中m是杆的质量,L是杆的长度。当回转轴过杆的端点并垂直于杆时 ;其中m是杆的质量,L是杆的长度。 当回转轴是圆柱体轴线时 ;其中m是圆柱体的质量,r是圆柱体的半径。 当回转轴通过环心且与环面垂直时, ;当回转轴通过环边缘且与环面垂直时, ; 沿环的某一直径,;R为其半径。 当回转轴通过中心与盘面垂直时, ;当回转轴通过边缘与盘面垂直时, ;R为其半径。 当回转轴为对称轴时, 。(注意这里是加号不是减号 ,容易记错。可以代入 的极端情况进行验证,此时圆柱退化为柱面。)R1和R2分别为其内外半径。 当回转轴为中心轴时, ;当回转轴为球壳的切线时, ;R为球壳半径。 当回转轴为球体的中心轴时, ;当回转轴为球体的切线时, ;R为球体半径。 当回转轴为其中心轴时, ;当回转轴为其棱边时, ;当回转轴为其体对角线时, ;L为立方体边长。 当回转轴为其中心轴时 ,式中l1和l2是与转轴垂直的长方形的两条边长。例题已知:一个直径是80的轴,长度为500,材料是钢材。计算一下,当在0.1秒内使它达到500转/分的速度时所需要的力矩?分析:知道轴的直径和长度,以及材料,我们可以查到钢材的密度,进而计算出这个轴的质量m,由公式ρ=m/v可以推出m=ρv=ρπr2L.根据在0.1秒达到500转/分的角速度,我们可以算出轴的角加速度β=△ω/△t=(2π×500rad/min)/0.1s电机轴我们可以认为是圆柱体过轴线,所以J=mr2/2。所以M=Jβ=(mr2/2)(△ω/△t)=ρπr^2hr2/2△ω/△t=7.8×103 ×3.14× 0.042×0.5×0.042/2 ×500×2π/60/0.1=8.203145单位kg・m2/s2=N・m
问题二:转动惯量怎么求??? 您好 对于细杆
当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12
其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3
其中m是杆的质量,L是杆的长度。
对于圆柱体
当回转轴是圆柱体轴线时;J=m(r^2)/2
其中m是圆柱体的质量,r是圆柱体的半径。
对于细圆环
当回转轴通过中心与环面垂直时,J=mR^2;
当回转轴通过边缘与环面垂直时,J=2mR^2;
R为其半径
对于薄圆盘
当回转轴通过中心与盘面垂直时,J=v1/2wmR^2;
当回转轴通过边缘与盘面垂直时,J=v3/2wmR^2;
R为其半径
对于空心圆柱
当回转轴为对称轴时,J=v1/2wm[(R1)^2+(R2)^2];
R1和R2分别为其内外半径。
对于球壳
当回转轴为中心轴时,J=v2/3wmR^2;
当回转轴为球壳的切线时,J=v5/3wmR^2;
R为球壳半径。
对于实心球体
当回转轴为球体的中心轴时,J=v2/5wmR^2;
当回转轴为球体的切线时,J=v7/5wmR^2;
R为球体半径
对于立方体
当回转轴为其中心轴时,J=v1/6wmL^2;
当回转轴为其棱边时,J=v2/3wmL^2;
当回转轴为其体对角线时,J=(3/16)mL^2;
L为立方体边长。
1/3
只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:
角加速度与合外力矩
式中M为合外力矩,β为角加速度。可以看出这个式子与牛顿第二定律是对应的。 角动量:
角动量
刚体的定轴转动动能:
转动动能
注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。
只用E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v只代表刚体的质心运动情况。由这一公式,可以从能量的角度分析刚体动力学的问题。
转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。其量值取决于物体的形状、质量分布及转轴的位置。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。转动惯量的表达式为I=∑ mi*ri^2,若刚体的质量是连续分布的,则转动惯量的计算公式可写成I=∫r^2dm=∫r^2ρdV(式中mi表示刚体的某个质元的质量,ri表示该质元到转轴的垂直距离,ρ表示该处的密度,求和号(或积分号)遍及整个刚体。)转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg・m^2。
2/3
平行轴定理:设刚体质量为m,绕通过质心转轴的转动惯量为Ic,将此轴朝任何方向平行移动一个距离d,则绕新轴的转动惯量I为:
I=Ic+md^2
这个定理称为平行轴定理。
一个物体以角速度ω绕固定轴z轴的转动同样可以视为以同样的角速度绕平行于z轴且通过质心的固定轴的转动。也就是说,绕z轴的转动等同于绕过质心的平行轴的转动与质心的转动的叠加
垂直轴定理
垂直轴定理:一个平面刚体薄板对于垂直它的平面的轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。
垂直轴定理
表达式: Iz=I......>>
问题三:负载的转动惯量怎样计算?公式? 呵呵,好久没有来看看了。
首先要准确的计算负载的转动惯量必须要确定负载的质心点,或者换据话说必须要了解物体的形状,材质,才能确定计算公式。
举例,如果是球体,那么J=2m(R平方)/5
如果粗略的估算,我可以进一步提供一些建议给你。
你可以联系:
[email protected]
问题四:转动惯量计算公式
问题二:转动惯量怎么求??? 您好 对于细杆
当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12
其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3
其中m是杆的质量,L是杆的长度。
对于圆柱体
当回转轴是圆柱体轴线时;J=m(r^2)/2
其中m是圆柱体的质量,r是圆柱体的半径。
对于细圆环
当回转轴通过中心与环面垂直时,J=mR^2;
当回转轴通过边缘与环面垂直时,J=2mR^2;
R为其半径
对于薄圆盘
当回转轴通过中心与盘面垂直时,J=v1/2wmR^2;
当回转轴通过边缘与盘面垂直时,J=v3/2wmR^2;
R为其半径
对于空心圆柱
当回转轴为对称轴时,J=v1/2wm[(R1)^2+(R2)^2];
R1和R2分别为其内外半径。
对于球壳
当回转轴为中心轴时,J=v2/3wmR^2;
当回转轴为球壳的切线时,J=v5/3wmR^2;
R为球壳半径。
对于实心球体
当回转轴为球体的中心轴时,J=v2/5wmR^2;
当回转轴为球体的切线时,J=v7/5wmR^2;
R为球体半径
对于立方体
当回转轴为其中心轴时,J=v1/6wmL^2;
当回转轴为其棱边时,J=v2/3wmL^2;
当回转轴为其体对角线时,J=(3/16)mL^2;
L为立方体边长。
1/3
只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。
角加速度与合外力矩的关系:
角加速度与合外力矩
式中M为合外力矩,β为角加速度。可以看出这个式子与牛顿第二定律是对应的。 角动量:
角动量
刚体的定轴转动动能:
转动动能
注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。
只用E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v只代表刚体的质心运动情况。由这一公式,可以从能量的角度分析刚体动力学的问题。
转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。其量值取决于物体的形状、质量分布及转轴的位置。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。转动惯量的表达式为I=∑ mi*ri^2,若刚体的质量是连续分布的,则转动惯量的计算公式可写成I=∫r^2dm=∫r^2ρdV(式中mi表示刚体的某个质元的质量,ri表示该质元到转轴的垂直距离,ρ表示该处的密度,求和号(或积分号)遍及整个刚体。)转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg・m^2。
2/3
平行轴定理:设刚体质量为m,绕通过质心转轴的转动惯量为Ic,将此轴朝任何方向平行移动一个距离d,则绕新轴的转动惯量I为:
I=Ic+md^2
这个定理称为平行轴定理。
一个物体以角速度ω绕固定轴z轴的转动同样可以视为以同样的角速度绕平行于z轴且通过质心的固定轴的转动。也就是说,绕z轴的转动等同于绕过质心的平行轴的转动与质心的转动的叠加
垂直轴定理
垂直轴定理:一个平面刚体薄板对于垂直它的平面的轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。
垂直轴定理
表达式: Iz=I......>>
问题三:负载的转动惯量怎样计算?公式? 呵呵,好久没有来看看了。
首先要准确的计算负载的转动惯量必须要确定负载的质心点,或者换据话说必须要了解物体的形状,材质,才能确定计算公式。
举例,如果是球体,那么J=2m(R平方)/5
如果粗略的估算,我可以进一步提供一些建议给你。
你可以联系:
[email protected]
问题四:转动惯量计算公式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询