证明:cn0+cn1+cn2+…+cnn=2^n 不用二项式定理...用组合的方法最好...

 我来答
会哭的礼物17
2022-09-12 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6478
采纳率:100%
帮助的人:37.3万
展开全部
设有n个小球放到两个不同的盒子中,盒子可以为空,若对小球进行讨论,每个小球有两个选择,共有2^n种放法若用分类原理,一号盒子中没有小球的放法有cn0种,有一个小球的放法有cn1种,有两个小球的放法有cn2种,有n个小球的放法有cnn种,共有放法cn0+cn1+cn2+…+cnn种显然,两种方法得到的结果相同,所以有cn0+cn1+cn2+…+cnn=2^n
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式