求逆矩阵(用初等变换法)
2022-12-13 · 百度认证:北京惠企网络技术有限公司官方账号
具体回答如下:
设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。
性质定理:
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T(转置的逆等于逆的转置)
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。
扩展资料:
若|A|≠0,则矩阵A可逆,且
证明:
必要性:当矩阵A可逆,则有AA-1=I。(其中I是单位矩阵)
两边取行列式,det(AA-1)=det(I)=1。
由行列式的性质:det(AA-1)=det(A)det(A-1)=1则det(A)≠0,(若等于0则上式等于0)
充分性:有伴随矩阵的定理,有
当det(A)≠0,等式同除以det(A),变成
比较逆矩阵的定义式,可知逆矩阵存在且逆矩阵
参考资料:
广告 您可能关注的内容 |