1/3*5+1/5*7+1/7*9+……1/97*99
1/3*5+1/5*7+1/7*9+……1/97*99
因为1/3×5=1/15化为1/3-1/5=5/15-3/15=2/15;
所以要保持不变需要乘以2分之1;
同样道理对于1/5×7,1/7×9,...1/97×99;
您好,很高兴为您解答,skyhunter002为您答疑解惑
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。
祝学习进步
1/3*5+1/5*7+1/7*9+……+1/97*99=
原式=1/2(1/3-1/5)+1/2(1/5-1/7)+……+1/2(1/97-1/99)
=1/2(1/3-1/99)
=16/99
1/3×5+1/5×7+1/7×9+…+1/2007×2009=?
原式=1/2(1/3-1/5+1/5-1/7+…+1/2007-1/2009)=1/2(1/3-1/2009)=1003/6027
1/3*5+1/5*7+1/7*9+……+1/1997*1999
1/3*5+1/5*7+1/7*9+……+1/1997*1999
=(1/3-1/5)/2+(1/5-1/7)/2+...+(1/1997-1/1999)/2
=(1/3-1/5+1/5-1/7+...+1/1997-1/1999)/2
=(1/3-1/1999)/2
=(1996/5997)/2
=998/5997
1/3*5+1/5*7+1/7*9+……+1/2001*2003=?
1/3*5=1/2*(1/3-1/5)
则原式=1/2*(1/3-1/5+1/5-1/7。。。+/2001+1/2003)
=1/2*(1/3-1/2003)
=1000/6009
1/1*3*5+1/3*5*7+1/5*7*9....+1/95*97*99
"1/1*3*5=1/4(1/1*3-1/3*5)1/3*5*7=1/4(1/3*5-1/5*7).....如上拆开后两两抵消最后剩下1/4(1/1*3-1/97*99)
1/1*3+1/3*5+1/5*7+1/7*9+。。。+1/101*103
=1/2(1-1/3+1/3-1/5+……+1/101-1/103)
=1/2*(1-1/103)
=51/103