什么是一阶线性微分方程
展开全部
一阶线性微分方程是形如y'+P(x)y=Q(x)的微分方程。
其中Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y'的指数为1。一阶线性微分方程的求解一般采用常数变易法,通过常数变易法,可求出一阶线性微分方程的通解。
实际上公式:y'+Py=Q之通解为y=[e^(-∫Pdx)]{∫Q[e^(∫Pdx)]dx+C}中要求每一个不定积分都要算出具体的原函数且不再加C。
而本题∫Pdx=ax,但∫Q[e^(ax)]dx=∫f(x)[e^(ax)]dx中,因为有抽象函数f(x)无法算出具体的原函数,所以要用不定积分与变限积分的公式:∫f(x)dx=∫[a→x]f(t)dt+C(所以每个题都可写上下限。
本题用此公式取上式的a=0,C换为C1,(当然被积函数也要换成本题的被积函数),代入公式后C1+C换为C2再换为C。这样才能代入初始条件y(0)=0,求出C。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询