拉格朗日中值定理的推论2是什么?

 我来答
生活家马先生
2023-01-04 · TA获得超过18.4万个赞
知道小有建树答主
回答量:136
采纳率:100%
帮助的人:3.5万
展开全部

[拉格朗日(Lagrange)中值定理]若函数f(x)满足条件:

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)内可导,则在(a,b)内至少存在一点ξ,使得

显然,罗尔定理是拉格朗日中值定理当f(a)=f(b)时的特殊情形,拉格朗日中值定理是罗尔定理的推广。

扩展资料

推论1:如果函数f(x)在区间(a,b)内任意一点的导数f'(x)都等于零,那么函数f(x)在(a,b)内是一个常数。

证:设x1,x2是区间(a,b)内的任意两点,且x1<x2,则函数f(x)在区间[x1,x2]上满足拉格朗日终值定理的条件,所以在(x1,x2)内至少存在一点ξ,使得f(x2)-f(x1)=f'(ξ)(x2-x1).

由假设知f'(ξ)=0,所以f(x1)=f(x2).

由于x1,x2是(a,b)内的任意两点,所以函数f(x)在(a,b)内的函数值总是相等的,即函数f(x)在(a,b)内是一个常数。
由此可知,函数f(x)在(a,b)内是一个常数的充分必要条件是在(a,b)内f'(x)=0.

推论2:如果函数f(x)与g(x)在区间(a,b)内每一点的导数f'(x)与g'(x)都相等,则这两个函数在区间(a,b)内至多相差一个常数,即f(x)=g(x)+C,x∈(a,b).这里C是一个确定的常数。

参考资料来源:百度百科-拉格朗日中值定理

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式