为什么要进行数据挖掘
1个回答
展开全部
问题一:为什么要进行数据挖掘和搜集客户信息 数据挖掘技术在客户关系管理中的典型应用
客户获取
客户获取的传统方式一般是通过大量的媒体广告、散发传单等方式吸引新客户。这种方式涉及面过广不能做到有的放矢而且企业投入太大。数据挖掘技术可以从以往的市场活动中收集到的有用数据(主要是指潜在客户反应模式分类)建立起数据挖掘模型。企业因此能够了解真正的潜在客户的特征分类,从而在以后的市场活动中做到有的放矢而不是传统的凭经验的猜想。
客户细分
细分就是指将一个大的消费群体划分成为一个个细分群体的动作,同属一个细分群体的消费者彼此相似,而隶属于不同细分群体的消费者是被视为不同的。比如将数据库中的数据按照年龄的不同来组织存放这样一个简单的动作就是细分。细分可以让用户从比较高的层次上来观察数据库中的数据,细分可以让人们用不同的方法对待处于不同细分群中的客户。数据挖掘中的分类、聚类等技术可以让用户对数据库中的数据按类别、年龄、职业、地址、喜好等企业感兴趣的属性进行客户细分。客户细分是企业确定产品和服务的基础.也是建立客户一对一营销的基础。
客户赢利能力分析
就企业的客户而言,企业的绝大部分利润是来自于小部分的客户,而对于企业来说很难确定哪些客户是高利润回报,哪些客户是低利润回报甚至是负利润回报的。数据挖掘技术能帮助企业区分利润回报不同的客户。从而可以将资源更多的分配在高利润回报的客户身上以产生更大的利润,同时减少低或负利润回报客户的投入。为此,在数据挖掘之前,企业应该建立一套计算利润回报的优化目标方法。可以是简单的计算,如某客户身上产生的收入减去所有相应的支出,也可以是较复杂的公式。然后利用数据挖掘工具从交易记录中挖掘相应的知识。
客户的保持
随着行业中竞争愈来愈激烈,人们普遍认识到获得一个新客户的开支比保持一个老客户的开支要大得多。所以如何保持原来老的客户,不让他们流失就成为CRM的一个重要课题。在实际应用中,利用数据挖掘工具为已经流失的客户建立模型,然后利用这些模型可以预测出现有客户中将来可能流失的客户,企业就能研究这些客户的需求,并采取相应的措施防止其流失,从而达到保持客户的目的。
问题二:数据挖掘为什么要对数据进行分类 不太明白您说的分类是什么意思?是在数据预处理阶段,还是挖掘的目的?
如果在数据预处理阶段,可能是只对某个领域的数据进行挖掘,从而可以得出更置信的结论;
如果是挖掘目的,也就是模型的输出,这就比较好理解了。
问题三:数据挖掘具体要做什么? 数据挖掘是一个很大的方面。你会java,这个很好。可以从weka 这个工具学起来,他是一个java写的工具包。对于一个具体问题,比如,怎么获取测试数据,对于数据怎么预处理,这些weka都有直接的接口。
至于你说的建模,不是一句话可以说清楚,首先你肯定要调查这个领域做得比较好的有哪些方法,然后从中至少选取几种方法,都要实现,做统计,归纳结果,选择符合你数据集的。当然你的数据 *** 一定要有代表性,就是国际认可的,至于怎么罚到这些数据,一般都是比较出名的论文引用的,这些就很可以。用的工具当然有很多,你不能局限于一种方式或者一种工具,不同情况下用不同的工具,根据实际需要选择。比如你要做聚类,你选择一个weka,做神经元,你可能会倾向于matlab,实际情况决定你选择的工具。
流程方面:数据获取------数据预处理-----完成预定的任务 这是一个大概的流程。这一套都可以用weka实现。对于数据挖掘而言,都是80%数据+20%算法,数据很重要,算法其实只是一个测试数据集的作用,这是一点看法,希望对你有帮助。
问题四:在数据挖掘之前为什么要对原始数据进行预处理 数据中包含很多噪声数据,需要去除不相关的数据,比如如分析无关的字段
了解数据质量,有些数据质量不足以直接使用,如包含过多的缺失值,需要进行缺失值处理
数据字段不能够直接使用,需要派生新的字段,以更好的进行进一步的数据挖掘
数据分散,需要将数据进行整合,例如追加表(增加行),或者合并表(增加列)
通过数据的预处理能够很好的对数据有初步的认识和理解。
数据预处理推荐你一个数据挖掘软件:SmartMining桌面版,它和SPSS modeler 一样都是面板操作,预处理能力和计算能力都非常不错
问题五:为什么要进行数据采样? 作为一个快速发展的领域,数据挖掘的目的是从数据中抽取有效的模式或者是有用的规则。数据挖掘的任务一般分为关联规则、分类及聚类。这些任务通常涉及到大量的数据集,在这些数据集中隐藏着有用的知识。称一个数据集是大的,数据集要么有大量的记录,要么有大量的属性,或者是两者的组合。具有大量的记录将使与模型匹配所花费的时间变长,而具有大量的属性将使模型占用的空间变大。大数据集对数据挖掘的算法来说是一个主要的障碍,在算法进行模式搜索及模型匹配的过程中,经常需要在数据集上遍历多遍,而将所有的数据集装入物理内存又非常困难。当数据集越来越大时,数据挖掘领域有面临着开发适合大数据集的算法,因此,一个简单有效的方法就是利用采样来缩减数据的大小(即记录的数量),即取一个大数据集的一个子集。在数据挖掘的应用中,存在两种方法进行采样:一种方法是某些数据挖掘算法在算法执行过程中并不是使用数据集中的所有数据:另一种方法是在部分数据上运行算法的结果与在整个数据集上得到的结果是相同的。这与在数据挖掘中使用的两种采样基本方法是不谋而合的。一种方法是将采样嵌入到数据挖掘的算法中;而另一种方法是采样与数据挖掘算法分别运行。但是,利用采样可能带来一个问题:在小概率的情况下其结果不准确,而在大概率的情况下其结果的相似性是非常好的.。其原因是,运行在整个数据集的子集上可能破坏了属性间的内在相关性,这种相关性在高维数据问题中是非常复杂而且难以理解的。
问题六:数据挖掘为什么要用java或python 主要是方便,python的第三方模块很丰富,而且语法非常简练,自由度很高,python的numpy、scipy、matplotlib模块可以完成所有的spss的功能,而且可以根据自己的需要按照定制的方法对数据进行清洗、归约,需要的情况下还可以跟sql进行连接,做机器学习,很多时候数据是从互联网上用网络爬虫收集的,python有urllib模块,可以很简单的完成这个工作,有些时候爬虫收集数据还要对付某些网站的验证码,python有PIL模块,可以方便的进行识别,如果需要做神经网络、遗传算法,scipy也可以完成这个工作,还有决策树就用if-then这样的代码,做聚类不能局限于某几种聚类,可能要根据实际情况进行调整,k-means聚类、DBSCAN聚类,有时候可能还要综合两种聚类方法对大规模数据进行聚类分析,这些都需要自行编码来完成,此外,基于距离的分类方法,有很多距离表达方式可以选用,比如欧几里得距离、余弦距离、闵可夫斯基距离、城市块距离,虽然并不复杂, 但是用python编程实现很方便,基于内容的分类方法,python有强大的nltk自然语言处理模块,对语言词组进行切分、收集、分类、统计等。
综上,就是非常非常方便,只要你对python足够了解,你发现你可以仅仅使用这一个工具快速实现你的所有想法
问题七:数据分析和数据挖掘的深入学习为什么重要 1、大数据(big data):
指无法在可承受的时间范围内用常规工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产;
在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)Veracity(真实性) 。
2、数据分析:
是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
3、数据挖掘(英语:Data mining):
又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
问题八:数据分析和数据挖掘的区别是什么?如何做好数据挖掘 大数据、数据分析、数据挖掘的区别是,大数据是互联网的海量数据挖掘,而数据挖掘更多是针对内部企业行业小众化的数据挖掘,数据分析就是进行做出针对性的分析和诊断,大数据需要分析的是趋势和发展,数据挖掘主要发现的是问题和诊断:
1、大数据(big data):
指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产;
在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)Veracity(真实性) 。
2、数据分析:
是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
3、数据挖掘(英语:Data mining):
又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
问题九:在crm过程中为什么要进行数据挖掘 挖掘大数据,进行分析,这样才能发挥crm的作用,做好客户关系管理。
客户获取
客户获取的传统方式一般是通过大量的媒体广告、散发传单等方式吸引新客户。这种方式涉及面过广不能做到有的放矢而且企业投入太大。数据挖掘技术可以从以往的市场活动中收集到的有用数据(主要是指潜在客户反应模式分类)建立起数据挖掘模型。企业因此能够了解真正的潜在客户的特征分类,从而在以后的市场活动中做到有的放矢而不是传统的凭经验的猜想。
客户细分
细分就是指将一个大的消费群体划分成为一个个细分群体的动作,同属一个细分群体的消费者彼此相似,而隶属于不同细分群体的消费者是被视为不同的。比如将数据库中的数据按照年龄的不同来组织存放这样一个简单的动作就是细分。细分可以让用户从比较高的层次上来观察数据库中的数据,细分可以让人们用不同的方法对待处于不同细分群中的客户。数据挖掘中的分类、聚类等技术可以让用户对数据库中的数据按类别、年龄、职业、地址、喜好等企业感兴趣的属性进行客户细分。客户细分是企业确定产品和服务的基础.也是建立客户一对一营销的基础。
客户赢利能力分析
就企业的客户而言,企业的绝大部分利润是来自于小部分的客户,而对于企业来说很难确定哪些客户是高利润回报,哪些客户是低利润回报甚至是负利润回报的。数据挖掘技术能帮助企业区分利润回报不同的客户。从而可以将资源更多的分配在高利润回报的客户身上以产生更大的利润,同时减少低或负利润回报客户的投入。为此,在数据挖掘之前,企业应该建立一套计算利润回报的优化目标方法。可以是简单的计算,如某客户身上产生的收入减去所有相应的支出,也可以是较复杂的公式。然后利用数据挖掘工具从交易记录中挖掘相应的知识。
客户的保持
随着行业中竞争愈来愈激烈,人们普遍认识到获得一个新客户的开支比保持一个老客户的开支要大得多。所以如何保持原来老的客户,不让他们流失就成为CRM的一个重要课题。在实际应用中,利用数据挖掘工具为已经流失的客户建立模型,然后利用这些模型可以预测出现有客户中将来可能流失的客户,企业就能研究这些客户的需求,并采取相应的措施防止其流失,从而达到保持客户的目的。
问题二:数据挖掘为什么要对数据进行分类 不太明白您说的分类是什么意思?是在数据预处理阶段,还是挖掘的目的?
如果在数据预处理阶段,可能是只对某个领域的数据进行挖掘,从而可以得出更置信的结论;
如果是挖掘目的,也就是模型的输出,这就比较好理解了。
问题三:数据挖掘具体要做什么? 数据挖掘是一个很大的方面。你会java,这个很好。可以从weka 这个工具学起来,他是一个java写的工具包。对于一个具体问题,比如,怎么获取测试数据,对于数据怎么预处理,这些weka都有直接的接口。
至于你说的建模,不是一句话可以说清楚,首先你肯定要调查这个领域做得比较好的有哪些方法,然后从中至少选取几种方法,都要实现,做统计,归纳结果,选择符合你数据集的。当然你的数据 *** 一定要有代表性,就是国际认可的,至于怎么罚到这些数据,一般都是比较出名的论文引用的,这些就很可以。用的工具当然有很多,你不能局限于一种方式或者一种工具,不同情况下用不同的工具,根据实际需要选择。比如你要做聚类,你选择一个weka,做神经元,你可能会倾向于matlab,实际情况决定你选择的工具。
流程方面:数据获取------数据预处理-----完成预定的任务 这是一个大概的流程。这一套都可以用weka实现。对于数据挖掘而言,都是80%数据+20%算法,数据很重要,算法其实只是一个测试数据集的作用,这是一点看法,希望对你有帮助。
问题四:在数据挖掘之前为什么要对原始数据进行预处理 数据中包含很多噪声数据,需要去除不相关的数据,比如如分析无关的字段
了解数据质量,有些数据质量不足以直接使用,如包含过多的缺失值,需要进行缺失值处理
数据字段不能够直接使用,需要派生新的字段,以更好的进行进一步的数据挖掘
数据分散,需要将数据进行整合,例如追加表(增加行),或者合并表(增加列)
通过数据的预处理能够很好的对数据有初步的认识和理解。
数据预处理推荐你一个数据挖掘软件:SmartMining桌面版,它和SPSS modeler 一样都是面板操作,预处理能力和计算能力都非常不错
问题五:为什么要进行数据采样? 作为一个快速发展的领域,数据挖掘的目的是从数据中抽取有效的模式或者是有用的规则。数据挖掘的任务一般分为关联规则、分类及聚类。这些任务通常涉及到大量的数据集,在这些数据集中隐藏着有用的知识。称一个数据集是大的,数据集要么有大量的记录,要么有大量的属性,或者是两者的组合。具有大量的记录将使与模型匹配所花费的时间变长,而具有大量的属性将使模型占用的空间变大。大数据集对数据挖掘的算法来说是一个主要的障碍,在算法进行模式搜索及模型匹配的过程中,经常需要在数据集上遍历多遍,而将所有的数据集装入物理内存又非常困难。当数据集越来越大时,数据挖掘领域有面临着开发适合大数据集的算法,因此,一个简单有效的方法就是利用采样来缩减数据的大小(即记录的数量),即取一个大数据集的一个子集。在数据挖掘的应用中,存在两种方法进行采样:一种方法是某些数据挖掘算法在算法执行过程中并不是使用数据集中的所有数据:另一种方法是在部分数据上运行算法的结果与在整个数据集上得到的结果是相同的。这与在数据挖掘中使用的两种采样基本方法是不谋而合的。一种方法是将采样嵌入到数据挖掘的算法中;而另一种方法是采样与数据挖掘算法分别运行。但是,利用采样可能带来一个问题:在小概率的情况下其结果不准确,而在大概率的情况下其结果的相似性是非常好的.。其原因是,运行在整个数据集的子集上可能破坏了属性间的内在相关性,这种相关性在高维数据问题中是非常复杂而且难以理解的。
问题六:数据挖掘为什么要用java或python 主要是方便,python的第三方模块很丰富,而且语法非常简练,自由度很高,python的numpy、scipy、matplotlib模块可以完成所有的spss的功能,而且可以根据自己的需要按照定制的方法对数据进行清洗、归约,需要的情况下还可以跟sql进行连接,做机器学习,很多时候数据是从互联网上用网络爬虫收集的,python有urllib模块,可以很简单的完成这个工作,有些时候爬虫收集数据还要对付某些网站的验证码,python有PIL模块,可以方便的进行识别,如果需要做神经网络、遗传算法,scipy也可以完成这个工作,还有决策树就用if-then这样的代码,做聚类不能局限于某几种聚类,可能要根据实际情况进行调整,k-means聚类、DBSCAN聚类,有时候可能还要综合两种聚类方法对大规模数据进行聚类分析,这些都需要自行编码来完成,此外,基于距离的分类方法,有很多距离表达方式可以选用,比如欧几里得距离、余弦距离、闵可夫斯基距离、城市块距离,虽然并不复杂, 但是用python编程实现很方便,基于内容的分类方法,python有强大的nltk自然语言处理模块,对语言词组进行切分、收集、分类、统计等。
综上,就是非常非常方便,只要你对python足够了解,你发现你可以仅仅使用这一个工具快速实现你的所有想法
问题七:数据分析和数据挖掘的深入学习为什么重要 1、大数据(big data):
指无法在可承受的时间范围内用常规工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产;
在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)Veracity(真实性) 。
2、数据分析:
是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
3、数据挖掘(英语:Data mining):
又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
问题八:数据分析和数据挖掘的区别是什么?如何做好数据挖掘 大数据、数据分析、数据挖掘的区别是,大数据是互联网的海量数据挖掘,而数据挖掘更多是针对内部企业行业小众化的数据挖掘,数据分析就是进行做出针对性的分析和诊断,大数据需要分析的是趋势和发展,数据挖掘主要发现的是问题和诊断:
1、大数据(big data):
指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产;
在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)Veracity(真实性) 。
2、数据分析:
是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
3、数据挖掘(英语:Data mining):
又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
问题九:在crm过程中为什么要进行数据挖掘 挖掘大数据,进行分析,这样才能发挥crm的作用,做好客户关系管理。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询