设随机变量X,Y相互独立,且服从同一分布,试证明: P{a<min(X,Y)≤b}=[P{X>a}]2-[P{Y>b}]2.
展开全部
【答案】:[证明] 因为X与Y独立同分布,故
P{a<min(X ,Y})≤b}=P{min(X,Y)≤b}-P{min(X,Y)≤a},=1-P{min(X,Y)>b}-[1-P{min(X,Y)>a}]=P{min(X,Y)>a}-P{min(X,Y)>b}=P{X>a,Y>a}-P{X>b,Y>b}=P{X>a}P{Y>a}-P{X>b}P{Y>b}=[P{X>a}]2-[P{Y>b}]2.
P{a<min(X ,Y})≤b}=P{min(X,Y)≤b}-P{min(X,Y)≤a},=1-P{min(X,Y)>b}-[1-P{min(X,Y)>a}]=P{min(X,Y)>a}-P{min(X,Y)>b}=P{X>a,Y>a}-P{X>b,Y>b}=P{X>a}P{Y>a}-P{X>b}P{Y>b}=[P{X>a}]2-[P{Y>b}]2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询