如图,△ABC中,AB=AC,D,E,F,分别在AB,BC,AC上,且BD=CE,∠DEF=∠B,图中是否存在和△BDE全等的
如图,△ABC中,AB=AC,D,E,F,分别在AB,BC,AC上,且BD=CE,∠DEF=∠B,图中是否存在和△BDE全等的三角形?并说明理由。...
如图,△ABC中,AB=AC,D,E,F,分别在AB,BC,AC上,且BD=CE,∠DEF=∠B,图中是否存在和△BDE全等的三角形?并说明理由。
展开
2个回答
展开全部
BD=CE,∠B=∠DEF所以:∠B=∠DEF=∠EFC
所以:BD‖EF
所以:四边形BFED是平行四边形
所以:△BFE≌△BDE
知道∠B=∠C,又因为∠DEC=∠DEF+∠FEC,又有∠DEC=∠B+∠BDE,知道∠DEF=∠B,所以∠FEC=∠BDE.有∠B=∠C,BD=CE,
∠FEC=∠BDE,所以△BDE全等于△CEF,(角边角)
所以:BD‖EF
所以:四边形BFED是平行四边形
所以:△BFE≌△BDE
知道∠B=∠C,又因为∠DEC=∠DEF+∠FEC,又有∠DEC=∠B+∠BDE,知道∠DEF=∠B,所以∠FEC=∠BDE.有∠B=∠C,BD=CE,
∠FEC=∠BDE,所以△BDE全等于△CEF,(角边角)
追问
平行四边形还不能用= =。
追答
证明
∵∠DEF=∠B
而:∠FEC=180°-∠DEB-∠DEF
∴∠FEC=180°-∠DEB -∠B
∴∠FEC=∠BDE
∵AB=AC
∴∠B=∠C
又∵BD=CE(已知)
∴△BDE≌△CEF(ASA)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询