这个极限怎么求啊
2个回答
展开全部
记方括号里的和式为S,则T/(n+1)< S < T/n, 这里T=sin(π/n)+sin(2π/n)+ ... + sin((n-1)π/n)+sinπ,
另一方面2sin(π/(2n))* T=cos(π/(2n))-cos(3π/(2n)) + cos(3π/(2n))-cos(3π/(2n)) + ... +
cos((2n-3)π/(2n))-cos((2n-1)π/(2n)) + cos((2n-1)π/(2n)) -cos((2n+1)π/(2n))
=cos(π/(2n)) - cos((2n+1)π/(2n))
=2cos(π/(2n))
所以T=cos(π/(2n))/sin(π/(2n)). 再由重要极限可得T ~ 2n/π, n→∞.
所以lim(T/(n+1))=lim(T/n)=2/π, n→∞. 最后由极限的迫敛性可得limS=2/π, n→∞.
另一方面2sin(π/(2n))* T=cos(π/(2n))-cos(3π/(2n)) + cos(3π/(2n))-cos(3π/(2n)) + ... +
cos((2n-3)π/(2n))-cos((2n-1)π/(2n)) + cos((2n-1)π/(2n)) -cos((2n+1)π/(2n))
=cos(π/(2n)) - cos((2n+1)π/(2n))
=2cos(π/(2n))
所以T=cos(π/(2n))/sin(π/(2n)). 再由重要极限可得T ~ 2n/π, n→∞.
所以lim(T/(n+1))=lim(T/n)=2/π, n→∞. 最后由极限的迫敛性可得limS=2/π, n→∞.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询