设随机变量X,Y相互独立,且服从[0,1]上的均匀分布,求X+Y的概率密度.

设随机变量X,Y相互独立,且都服从[0,1]上均匀分布,求X+Y的概率密度服从[0,1]上的均匀分布所以X概率密度是1,Y概率密度是1因为X,Y相互独立所以P(XY)=P... 设随机变量X,Y相互独立,且都服从[0,1]上均匀分布,求X+Y的概率密度
服从[0,1]上的均匀分布
所以X概率密度是1,Y概率密度是1
因为X,Y相互独立
所以P(XY)=P(X)P(Y)
设Z=X+Y
当0<Z<1时
积分∫∫1 dxdy 0<y<z-x,0<x<z
=z^2/2
求导得z
当1<Z<2时
积分∫∫1 dxdy 积分域0<y<1,0<x<z-1与0<y<z-x,z-1<x<1
=z-1+z-z^2/2
求导得2-z
所以概率密度是
f(Z)=2-z 1<z<2
z 0<z<1
0 其他
我想问的是"积分∫∫1 dxdy 积分域0<y<1,0<x<z-1与0<y<z-x,z-1<x<1 "是怎么积出来的,过程要详细.谢谢!
展开
帐号已注销
2019-06-20 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

00.0055862。

事实上,这道题由于x,y服从(0,1)的均匀分布,联合概率密度为1,所以根本不需要去求积分,直接算面积就可以了。左边矩形面积为(z-1)*1=z-1,右边梯形面积为(1/2)*(z-1+1)*(2-z)=z-z^2/2,所以面积和就是z-1+z-z^2/2。

X,Y相互独立,且都服从[0,1]上的均匀分布 --> f(x,y)=1.

Z=X+Y

F(z)=P(x+y<z) = ∫∫f(x,y)dxdy = ∫∫dxdy =直线x=0,x=1,y=0,y=1,y=-x+z所围面积

当0<z<1时, F(z) = (z^2)/2

当1<z<2时, F(z) = (z^2/2)-(z-1)^2

Z=X+Y的概率密度

f(z) = dF(z)/dz=z      0<z<1;  f(z) = 2-z     1<z<2。

扩展资料:

由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。

更准确来说,如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。

连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。

参考资料来源:百度百科-概率密度函数

大雅新科技有限公司
2024-11-19 广告
这方面更多更全面的信息其实可以找下大雅新。深圳市大雅新科技有限公司从事KVM延长器,DVI延长器,USB延长器,键盘鼠标延长器,双绞线视频传输器,VGA视频双绞线传输器,VGA延长器,VGA视频延长器,DVI KVM 切换器等,优质供应商,... 点击进入详情页
本回答由大雅新科技有限公司提供
黄汕尾
2011-09-02
知道答主
回答量:90
采纳率:0%
帮助的人:26.4万
展开全部
00.0055862
追问
谢谢您,但我不是要确切数字而是怎么积出来等于z-1+z-z^2/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
shj_arthur
推荐于2017-12-16 · TA获得超过1327个赞
知道小有建树答主
回答量:175
采纳率:0%
帮助的人:238万
展开全部

不太清楚你的意思,是不知道积分区域怎么出来的?还是不知道怎么积分?

其实就是左右两块区域求积分和,见下图

追问
不好意思没说清楚,是不知道怎么积分的
追答
就是图中黑色区域,左边矩形和右边梯形的积分和。
事实上,这道题由于x,y服从(0,1)的均匀分布,联合概率密度为1,所以根本不需要去求积分,直接算面积就可以了。左边矩形面积为(z-1)*1=z-1,右边梯形面积为(1/2)*(z-1+1)*(2-z)=z-z^2/2,所以面积和就是z-1+z-z^2/2
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式