
计算1/(3+根号3)+1/(5倍根号3+3倍根号5)+1/(7倍根号5+5倍根号7)+。
计算1/(3+根号3)+1/(5倍根号3+3倍根号5)+1/(7倍根号5+5倍根号7)+。。。+1/(49倍根号47加47倍根号49)...
计算1/(3+根号3)+1/(5倍根号3+3倍根号5)+1/(7倍根号5+5倍根号7)+。。。+1/(49倍根号47加47倍根号49)
展开
展开全部
显然第n项表达式为1/((2n+1)√(2n-1)+(2n-1)√(2n+1)
分母有理化,得
1/((2n+1)√(2n-1)+(2n-1)√(2n+1))
=((2n+1)√(2n-1)-(2n-1)√(2n+1))/[((2n+1)√(2n-1)+(2n-1)√(2n+1))((2n+1)√(2n-1)-(2n-1)√(2n+1))]
=((2n+1)√(2n-1)-(2n-1)√(2n+1))/[(2n+1)²(2n-1)-(2n-1)²(2n+1)]
=((2n+1)√(2n-1)-(2n-1)√(2n+1))/[(2n+1)(2n-1)*2]
=[(√(2n-1))/(2n-1)-(√(2n+1))/(2n+1)]/2
则
原式=[(1-√3/3)+(√3/3-√5/5)+(√5/5-√7/7)+……+(√47/47-√49/49)]/2
=[1-√49/49]/2
=(1-7/49)/2
=3/7
分母有理化,得
1/((2n+1)√(2n-1)+(2n-1)√(2n+1))
=((2n+1)√(2n-1)-(2n-1)√(2n+1))/[((2n+1)√(2n-1)+(2n-1)√(2n+1))((2n+1)√(2n-1)-(2n-1)√(2n+1))]
=((2n+1)√(2n-1)-(2n-1)√(2n+1))/[(2n+1)²(2n-1)-(2n-1)²(2n+1)]
=((2n+1)√(2n-1)-(2n-1)√(2n+1))/[(2n+1)(2n-1)*2]
=[(√(2n-1))/(2n-1)-(√(2n+1))/(2n+1)]/2
则
原式=[(1-√3/3)+(√3/3-√5/5)+(√5/5-√7/7)+……+(√47/47-√49/49)]/2
=[1-√49/49]/2
=(1-7/49)/2
=3/7
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询