先化简,再求值,初三的
先化简,再求值,【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】,其中x=√2+1,y=√2-1...
先化简,再求值,【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】,其中x=√2+1,
y=√2-1 展开
y=√2-1 展开
展开全部
【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】
=,【1/(x-y)】-【1/(x+y)】×【(x²-y²)/xy²】,
=【(x+y)xy²-(x-y)(x²-y²)】/【(x-y)(x+y)xy²】
={(x+y)【xy²-(x-y)(x-y)】}/【(x-y)(x+y)xy²】
=【xy²-(x-y)(x-y)】/【(x-y)xy²】
x=√2+1,
y=√2-1
x-y=2 xy²=√2-1 所以)【xy²-(x-y)(x-y)】/【(x-y)xy²】=(√2-5)/(2√2-2)
=,【1/(x-y)】-【1/(x+y)】×【(x²-y²)/xy²】,
=【(x+y)xy²-(x-y)(x²-y²)】/【(x-y)(x+y)xy²】
={(x+y)【xy²-(x-y)(x-y)】}/【(x-y)(x+y)xy²】
=【xy²-(x-y)(x-y)】/【(x-y)xy²】
x=√2+1,
y=√2-1
x-y=2 xy²=√2-1 所以)【xy²-(x-y)(x-y)】/【(x-y)xy²】=(√2-5)/(2√2-2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
上下乘(x²-y²):
{[1/(x-y)]-[1/(x+y)]}/[xy²/(x²-y²)]
=[(x+y)-(x-y)]/xy²
=2y/xy²
=2/xy
=2/(√2+1)(√2-1)
=2/(2-1)
=2
{[1/(x-y)]-[1/(x+y)]}/[xy²/(x²-y²)]
=[(x+y)-(x-y)]/xy²
=2y/xy²
=2/xy
=2/(√2+1)(√2-1)
=2/(2-1)
=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询