已知x=1/2(√5+√3),y=1/2(√5-√3),求x²-xy+y²和x/y+y/x的值。
1个回答
展开全部
解:x²-xy+y²
=(x²-2xy+y²)+xy
=(x-y)²+xy
=[1/2(√5+√3)-1/2(√5-√3)]²+1/2(√5+√3)×1/2(√5-√3)
=(√3)²+1/4×(5-3)
=3+1/2
=7/2
x/y+y/x
=x²/(xy)+y²/(xy)
=(x²+y²)/(xy)
=[(x²+2xy+y²)-2xy]/(xy)
=[(x+y)²-2xy]/(xy)
=[(x+y)²/(xy)]-2
=﹛[1/2(√5+√3)+1/2(√5-√3)]²/[1/2(√5+√3)×1/2(√5-√3)]﹜-2
=(√5)²/[1/4×(5-3)]-2
=[5/(1/2)]-2
=10-2
=8
=(x²-2xy+y²)+xy
=(x-y)²+xy
=[1/2(√5+√3)-1/2(√5-√3)]²+1/2(√5+√3)×1/2(√5-√3)
=(√3)²+1/4×(5-3)
=3+1/2
=7/2
x/y+y/x
=x²/(xy)+y²/(xy)
=(x²+y²)/(xy)
=[(x²+2xy+y²)-2xy]/(xy)
=[(x+y)²-2xy]/(xy)
=[(x+y)²/(xy)]-2
=﹛[1/2(√5+√3)+1/2(√5-√3)]²/[1/2(√5+√3)×1/2(√5-√3)]﹜-2
=(√5)²/[1/4×(5-3)]-2
=[5/(1/2)]-2
=10-2
=8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询