如图:在△ABC中,∠A=90°,AB=AC,D是BC中点,AE=BF,求证(1):DE=DF; (2):DE⊥DF。
4个回答
展开全部
证明:1)连接AD.三角形ABC为等腰直角三角形,则AD⊥BC,AD=BD=BC/2,∠DAE=45°=∠B.
又AE=BF,则⊿DAE≌ΔDBF(SAS),得DE=DF.
2)⊿DAE≌ΔDBF(已证),则∠ADE=∠DBF.
故:∠ADE+∠ADF=∠DBF+∠ADF=90°,所以,DE⊥DF.
又AE=BF,则⊿DAE≌ΔDBF(SAS),得DE=DF.
2)⊿DAE≌ΔDBF(已证),则∠ADE=∠DBF.
故:∠ADE+∠ADF=∠DBF+∠ADF=90°,所以,DE⊥DF.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:(1)连接AD
在Rt△ABC中,D为BC中点
∴AD=BD=CD,又AB=AC
∴∠ABD=∠BAD=∠DAC=45°
∵AE=BF
∴△BFD≌△AED
∴DF=DE
(2)由(1)可知,∠BDF=∠ADE,AD⊥BC
∴∠ADF=∠CDE
∴∠EDF=∠ADF+∠ADE=1/2∠BDC=90°
在Rt△ABC中,D为BC中点
∴AD=BD=CD,又AB=AC
∴∠ABD=∠BAD=∠DAC=45°
∵AE=BF
∴△BFD≌△AED
∴DF=DE
(2)由(1)可知,∠BDF=∠ADE,AD⊥BC
∴∠ADF=∠CDE
∴∠EDF=∠ADF+∠ADE=1/2∠BDC=90°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
首先作为一个完整的题目,应该交待E,F是什么。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询