利用勾股定理解决图形的折叠问题
将长方形ABCD沿直线BD折叠,使点C落到点C'处,BC'交AD于点E,AD=8,AB=4,求三角形BED的面积...
将长方形ABCD沿直线BD折叠,使点C落到点C'处,BC'交AD于点E,AD=8,AB=4,求三角形BED的面积
展开
3个回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
解:由题意可知,∠C'BD=∠CBD;又AD平行于BC,得∠CBD=∠ADB.
故:∠C'BD=∠ADB,得EB=ED.
设EB=ED=X,则AE=8-X.
AE^2+AB^2=BE^2,即(8-X)²+4²=X²,X=5.
所以,S三角形BED=DE*BA/2=5*4/2=10.
故:∠C'BD=∠ADB,得EB=ED.
设EB=ED=X,则AE=8-X.
AE^2+AB^2=BE^2,即(8-X)²+4²=X²,X=5.
所以,S三角形BED=DE*BA/2=5*4/2=10.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:∵AD∥BC,
∴∠DBC=∠BDA.
∵∠C′BD=∠DBC,
∴∠C′BD=∠BDA.
∴DE=BE.
设DE=x,则AE=8-x.在△ABE中,
x²=4²+(8-x)².
解得x=5.
∴S△DBE= ½×5×4=10(平方单位).
∴∠DBC=∠BDA.
∵∠C′BD=∠DBC,
∴∠C′BD=∠BDA.
∴DE=BE.
设DE=x,则AE=8-x.在△ABE中,
x²=4²+(8-x)².
解得x=5.
∴S△DBE= ½×5×4=10(平方单位).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询