设3x2+2y2=6X,且X、Y是实数,求X与X2+Y2的最大值
4个回答
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工...
点击进入详情页
本回答由华瑞RAE一级代理商提供
2011-09-03
展开全部
你这个等式有问题啊,里面没有Y
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
3x²+2y²=6x 变形得 6x-3x²=2y²≥0 解不等式 得 0≤x≤2 x的最大值为2
再变形得 2(x²+y²)=6x-x²=-(x-3)²+9 由上面的0≤x≤2,知2(x²+y²)=6x-x²=-(x-3)²+9当x=2时取得最大值为8 ,即 x²+y²的最大值为 4
再变形得 2(x²+y²)=6x-x²=-(x-3)²+9 由上面的0≤x≤2,知2(x²+y²)=6x-x²=-(x-3)²+9当x=2时取得最大值为8 ,即 x²+y²的最大值为 4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
3x^2+2y^2=6X
3x^2+2y^2-6X=0
x^2+2y^2/3-2x=0
(x-1)^2+2y^2/3=1 这是一个椭圆方程
当 y=0 时 x有最大值
Xmax=2
设 f(x,y)=x^2+y^2=y^2/3+2x 则
f‘x=2≠0
所以 x^2+y^2 无最大值
3x^2+2y^2-6X=0
x^2+2y^2/3-2x=0
(x-1)^2+2y^2/3=1 这是一个椭圆方程
当 y=0 时 x有最大值
Xmax=2
设 f(x,y)=x^2+y^2=y^2/3+2x 则
f‘x=2≠0
所以 x^2+y^2 无最大值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询