高阶无穷小怎么求?

 我来答
娱乐的微风
2023-08-02 · TA获得超过209个赞
知道答主
回答量:7
采纳率:0%
帮助的人:2431
展开全部
首先要搞清楚高阶无穷小的定义的一个知识点,即若x→某数,f(x)是g(x)的高阶无穷小,则 称f(x)=o(g(x)),例如:若o(x^2)+o(x^3)=o(x^2) 那等式左边即为f(x),等式右边的x^2即为g(x),lim f(x)/g(x)=0
其次要明白 o(x^n)表示x^n的高阶无穷小,而且x^n的高阶无穷小不止一个,任意一个x的大于n的次幂都是x^n的高阶无穷小。
所以,在计算或者检验的时候,等式左边出现的o(x^n)可用任意一个他的高阶无穷小替,大多数情况下用x^(n+1)替换就行,比如o(x^2)+o(x^3)=o(x^2) 等式左边可变为 x^3+x^4 即f(x)= x^3+x^4 由等式右边可看出g(x)=x^2
判断此等式是否正确就计算 lim x→0 (x^3+x^4) /x^2 是否等于0
很明显计算结果为0 所以o(x^2)+o(x^3)=o(x^2)正确
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式