
求方程组x1+2x2+x3-2x4=0,x1-x2-5x3+7x4=0,x2+2x3-3x4=0的基础解系和通解
展开全部
解: 系数矩阵 A =
1 2 1 -2
1 -1 -5 7
0 1 2 -3
r2-r1
1 2 1 -2
0 -3 -6 9
0 1 2 -3
r1-2r3,r2+3r3
1 0 -3 4
0 0 0 0
0 1 2 -3
基础解系为: a1=(3,-2,1,0)', a2=(4,-3,0,-1)'
通解为: c1a1+c2a2, c1,c2 为任意常数.
1 2 1 -2
1 -1 -5 7
0 1 2 -3
r2-r1
1 2 1 -2
0 -3 -6 9
0 1 2 -3
r1-2r3,r2+3r3
1 0 -3 4
0 0 0 0
0 1 2 -3
基础解系为: a1=(3,-2,1,0)', a2=(4,-3,0,-1)'
通解为: c1a1+c2a2, c1,c2 为任意常数.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |