如图23-32所示,△OAB,△OCD为等腰直角三角形,∠AOB=∠COD=90°
(1)如图23-32,点C在OA边上,点D在OB边上,连接AD,BC,M为线段AD的中点,求证OM⊥BC(2)将△OCD绕点O逆时针旋转一定角度(如图23-33)M为线段...
(1)如图23-32,点C在OA边上,点D在OB边上,连接AD,BC,M为线段AD的中点,求证OM⊥BC
(2)将△OCD绕点O逆时针旋转一定角度(如图23-33)M为线段AD的中点
①线段OM与线段BC是否存在某种确定的数量关系?写出并证明你的结论
②OM⊥BC是否仍然成立?若成立,请证明你的结论,若不成立,请说明理由 展开
(2)将△OCD绕点O逆时针旋转一定角度(如图23-33)M为线段AD的中点
①线段OM与线段BC是否存在某种确定的数量关系?写出并证明你的结论
②OM⊥BC是否仍然成立?若成立,请证明你的结论,若不成立,请说明理由 展开
3个回答
展开全部
(1)∵△OAB,△OCD为等腰直角三角形,∴OA=OB,OC=OD,∵∠AOB=∠COD=90°,∴△OAD≌△OBC,∠OAD=∠OBC;∵M为线段AD的中点,∴MD=MO=MA,∠OAD=∠MOA=∠OBC,设MO交BC于E点,∵∠OCD是△EOC和△BOC的共用角,∴△EOC∽△BOC,∠OEC=∠BOC=90°,OM⊥BC;
(2)设旋转角为α,OA=OB=a,OD=OC=b;由余弦定理得:AD²=a²+b²-2abcos(π/2+a)=a²+b²+2absinα,BC²=a²+b²-2abcos(π/2-a)=a²+b²-2absinα,两式相加得:AD²+BC²=2a²+2b²;OM是△AOD在AD边上的中线,由余弦定理得:a²=AD²/4+OM²-AD*OMcos∠AMO,b²=AD²/4+OM²-AD*OMcos(π-∠AMO),两式相加得:a²+b²=AD²/2+2OM²;代入得:AD²+BC²=AD²+4OM²,则BC=2OM;
(3)在△OBC中,由余弦定理得:b²=4OM²+a²-4aOMcos∠OBC,cos∠OBC=(4OM²+a²-b²)/4aOM;在△AOM中,由余弦定理得:AD²/4=OM²+a²-2aOMcos∠AOM,整理得:cos∠AOM=(4OM²+a²-b²)/4aOM;则cos∠OBC=cos∠AOM,∠OBC=∠AOM,OM⊥BC成立。
(2)设旋转角为α,OA=OB=a,OD=OC=b;由余弦定理得:AD²=a²+b²-2abcos(π/2+a)=a²+b²+2absinα,BC²=a²+b²-2abcos(π/2-a)=a²+b²-2absinα,两式相加得:AD²+BC²=2a²+2b²;OM是△AOD在AD边上的中线,由余弦定理得:a²=AD²/4+OM²-AD*OMcos∠AMO,b²=AD²/4+OM²-AD*OMcos(π-∠AMO),两式相加得:a²+b²=AD²/2+2OM²;代入得:AD²+BC²=AD²+4OM²,则BC=2OM;
(3)在△OBC中,由余弦定理得:b²=4OM²+a²-4aOMcos∠OBC,cos∠OBC=(4OM²+a²-b²)/4aOM;在△AOM中,由余弦定理得:AD²/4=OM²+a²-2aOMcos∠AOM,整理得:cos∠AOM=(4OM²+a²-b²)/4aOM;则cos∠OBC=cos∠AOM,∠OBC=∠AOM,OM⊥BC成立。
更多追问追答
追问
我还没学“余弦定理”用全等相似做行吗
追答
用全等相似可能证不出来,因为角度互余,缺少相似条件。
展开全部
(1)∠PCD=∠PDC
理由如下:
因为P点是∠AOB平分线上一点(已知)
所以)∠COP=∠BOP(角平分线定义)
因为PC⊥OA,PD⊥OB(已知)
所以∠OCP=90°,∠OBP=90°(垂直定义)
所以∠OCP=∠OBP(等量代换)
因为OP=PO(公共边)
所以△OBP≌△OCP(A.A.S)
所以∠PCD=∠PDC(全等三角形的对应角相等)
(2)OP是CD的垂直平分线
理由如下:
因为∠PCD=∠PDC(已求)
且∠OCP=∠OBP(已求)
所以∠OCP-∠PCD=∠OBP-∠PDC(等式性质)
即∠OCD=∠ODC
所以OC=OD(等角对等边)
所以OP是CD的垂直平分线(等腰三角形的三线合一)
理由如下:
因为P点是∠AOB平分线上一点(已知)
所以)∠COP=∠BOP(角平分线定义)
因为PC⊥OA,PD⊥OB(已知)
所以∠OCP=90°,∠OBP=90°(垂直定义)
所以∠OCP=∠OBP(等量代换)
因为OP=PO(公共边)
所以△OBP≌△OCP(A.A.S)
所以∠PCD=∠PDC(全等三角形的对应角相等)
(2)OP是CD的垂直平分线
理由如下:
因为∠PCD=∠PDC(已求)
且∠OCP=∠OBP(已求)
所以∠OCP-∠PCD=∠OBP-∠PDC(等式性质)
即∠OCD=∠ODC
所以OC=OD(等角对等边)
所以OP是CD的垂直平分线(等腰三角形的三线合一)
追问
你从哪里复制来的?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
②成立 延长AO至F,使OF=OB,则OM平行DF,△BCO≌△FOD,即可得证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询