已知sin(α+π/2)=-√5/5,α∈(0,π)
求1):[sin(α-π/2)-cos(3π/2+α)]/[sin(π-α)+cos(3π+α)]2):cos(2α-3π/4)...
求1):[sin(α-π/2)-cos(3π/2+α)]/[sin(π-α)+cos(3π+α)]
2):cos(2α-3π/4) 展开
2):cos(2α-3π/4) 展开
1个回答
展开全部
sin(α+π/2)=cosa=-√5/5,所以a∈(π/2,π)
所以sina=2√5/5
[sin(α-π/2)-cos(3π/2+α)]/[sin(π-α)+cos(3π+α)]
=[cosa+sina]/[sina-cosa]
=(√5/5)/(3√5/5)
=1/3
cos(2α-3π/4)
=cos2acos3π/4+sin2asin3π/4
={1-2(sina)^2}*{(-根号2)/2}+2sinacosa*{(根号2)/2}
=(3根号2)/10-(4根号2)/10
=(-根号2)/10
如有不明白,可以追问!!
谢谢采纳!
所以sina=2√5/5
[sin(α-π/2)-cos(3π/2+α)]/[sin(π-α)+cos(3π+α)]
=[cosa+sina]/[sina-cosa]
=(√5/5)/(3√5/5)
=1/3
cos(2α-3π/4)
=cos2acos3π/4+sin2asin3π/4
={1-2(sina)^2}*{(-根号2)/2}+2sinacosa*{(根号2)/2}
=(3根号2)/10-(4根号2)/10
=(-根号2)/10
如有不明白,可以追问!!
谢谢采纳!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询