An=1/n(n+1)(n+2)(n+3) 求和
2个回答
展开全部
列项相消:
因为An=1/n(n+1)(n+2)(n+3)=(1/3)[1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3)]
所以求和=(1/3)[1/6-1/(n+1)(n+2)(n+3)]
因为An=1/n(n+1)(n+2)(n+3)=(1/3)[1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3)]
所以求和=(1/3)[1/6-1/(n+1)(n+2)(n+3)]
追问
再详细点,谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
An=1/n(n+1)(n+2)(n+3)=(1/n-1/(n+1))*(1/(n+2)-1/(n+3))=1/n(n+2)+1/((n+1)(n+3))-1/n(n+3)-1/((n+1)(n+2))=1/2(1/n-1/(n+2)))+1/2(1/(n+1)-1/(n+3))-1/3(1/n-1/(n+3))-(1/(n+1)-1/(n+2))
=1/6n-1/(2(n+1))+1/(2(n+2))-1/(6(n+3))
=1/6n-1/(2(n+1))+1/(2(n+2))-1/(6(n+3))
追问
答案有问题
追答
我这个不是最后答案,只是A的分解把An分解出来,就可以列项相消了
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询