An=1/n(n+1)(n+2)(n+3) 求和

Her拨浪鼓
2011-09-04 · TA获得超过589个赞
知道小有建树答主
回答量:176
采纳率:0%
帮助的人:247万
展开全部
列项相消:
因为An=1/n(n+1)(n+2)(n+3)=(1/3)[1/n(n+1)(n+2)-1/(n+1)(n+2)(n+3)]
所以求和=(1/3)[1/6-1/(n+1)(n+2)(n+3)]
追问
再详细点,谢谢
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
天真地称子
推荐于2021-01-08 · TA获得超过214个赞
知道小有建树答主
回答量:162
采纳率:0%
帮助的人:131万
展开全部
An=1/n(n+1)(n+2)(n+3)=(1/n-1/(n+1))*(1/(n+2)-1/(n+3))=1/n(n+2)+1/((n+1)(n+3))-1/n(n+3)-1/((n+1)(n+2))=1/2(1/n-1/(n+2)))+1/2(1/(n+1)-1/(n+3))-1/3(1/n-1/(n+3))-(1/(n+1)-1/(n+2))
=1/6n-1/(2(n+1))+1/(2(n+2))-1/(6(n+3))
追问
答案有问题
追答
我这个不是最后答案,只是A的分解把An分解出来,就可以列项相消了
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式