
什么是矩阵的本征值
3个回答

2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
引用WYZZWB2011的回答:
没有矩阵的本征值的说法,只有特征值的说法。
在数学中,矩阵(Matrix)是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如f(x) 4x之类的线性函数的推广。设定基底后,某个向量v可以表示为m×1的矩阵,而线性变换f可以表示为行数为m的矩阵A,使得经过变换后得到的向量f(v)可以表示成Av的形式。矩阵的特征值和特征向量可以揭示线性变换的深层特性。
矩阵的最基本运算包括矩阵加(减)法,数乘和转置运算。被称为“矩阵加法”、“数乘”和“转置”的运算不止一种。
两个m×n矩阵A和B的和,标记为A+B,一样是个m×n矩阵,其内的各元素为其相对应元素相加后的值。
只有当矩阵A的列数与矩阵B的行数相等时A×B才有意义。一个m×n的矩阵a(m,n)左乘一个n×p的矩阵b(n,p),会得到一个m×p的矩阵c(m,p)。左乘:又称前乘,就是乘在左边(即乘号前),比如说,A左乘E即AE。矩阵乘法满足结合律,但不满足交换律和约去律。
将矩阵的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到这个矩阵的转置。
没有矩阵的本征值的说法,只有特征值的说法。
在数学中,矩阵(Matrix)是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如f(x) 4x之类的线性函数的推广。设定基底后,某个向量v可以表示为m×1的矩阵,而线性变换f可以表示为行数为m的矩阵A,使得经过变换后得到的向量f(v)可以表示成Av的形式。矩阵的特征值和特征向量可以揭示线性变换的深层特性。
矩阵的最基本运算包括矩阵加(减)法,数乘和转置运算。被称为“矩阵加法”、“数乘”和“转置”的运算不止一种。
两个m×n矩阵A和B的和,标记为A+B,一样是个m×n矩阵,其内的各元素为其相对应元素相加后的值。
只有当矩阵A的列数与矩阵B的行数相等时A×B才有意义。一个m×n的矩阵a(m,n)左乘一个n×p的矩阵b(n,p),会得到一个m×p的矩阵c(m,p)。左乘:又称前乘,就是乘在左边(即乘号前),比如说,A左乘E即AE。矩阵乘法满足结合律,但不满足交换律和约去律。
将矩阵的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到这个矩阵的转置。
展开全部
矩阵的特征值相当于矩阵力学中的本征值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
没有矩阵的本征值的说法,只有特征值的说法。
在数学中,矩阵(Matrix)是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如f(x) 4x之类的线性函数的推广。设定基底后,某个向量v可以表示为m×1的矩阵,而线性变换f可以表示为行数为m的矩阵A,使得经过变换后得到的向量f(v)可以表示成Av的形式。矩阵的特征值和特征向量可以揭示线性变换的深层特性。
矩阵的最基本运算包括矩阵加(减)法,数乘和转置运算。被称为“矩阵加法”、“数乘”和“转置”的运算不止一种。
两个m×n矩阵A和B的和,标记为A+B,一样是个m×n矩阵,其内的各元素为其相对应元素相加后的值。
只有当矩阵A的列数与矩阵B的行数相等时A×B才有意义。一个m×n的矩阵a(m,n)左乘一个n×p的矩阵b(n,p),会得到一个m×p的矩阵c(m,p)。左乘:又称前乘,就是乘在左边(即乘号前),比如说,A左乘E即AE。矩阵乘法满足结合律,但不满足交换律和约去律。
将矩阵的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到这个矩阵的转置。
在数学中,矩阵(Matrix)是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如f(x) 4x之类的线性函数的推广。设定基底后,某个向量v可以表示为m×1的矩阵,而线性变换f可以表示为行数为m的矩阵A,使得经过变换后得到的向量f(v)可以表示成Av的形式。矩阵的特征值和特征向量可以揭示线性变换的深层特性。
矩阵的最基本运算包括矩阵加(减)法,数乘和转置运算。被称为“矩阵加法”、“数乘”和“转置”的运算不止一种。
两个m×n矩阵A和B的和,标记为A+B,一样是个m×n矩阵,其内的各元素为其相对应元素相加后的值。
只有当矩阵A的列数与矩阵B的行数相等时A×B才有意义。一个m×n的矩阵a(m,n)左乘一个n×p的矩阵b(n,p),会得到一个m×p的矩阵c(m,p)。左乘:又称前乘,就是乘在左边(即乘号前),比如说,A左乘E即AE。矩阵乘法满足结合律,但不满足交换律和约去律。
将矩阵的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到这个矩阵的转置。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询