1/1乘2乘3+1/2乘3乘4+...+1/98乘99乘100=
1个回答
展开全部
1/(1*2*3)+1/(2*3*4)+...+1/(98*99*100)
=(1/2)[1/(1*2)-1/(2*3)]+(1/2)[1/(2*3)-1/(3*4)]+...+(1/2)[1/(98*99)-1/(99*100)]
=(1/2)[1/(1*2)]-(1/2)[1/(2*3)]+(1/2)[1/(2*3)]-(1/2)[1/(3*4)]+...+(1/2)[1/(98*99)]-(1/2)[1/(99*100)]
中间的全部互相抵消,所以
=(1/2)[1/(1*2)]-(1/2)[1/(99*100)]
=4949/19800
=(1/2)[1/(1*2)-1/(2*3)]+(1/2)[1/(2*3)-1/(3*4)]+...+(1/2)[1/(98*99)-1/(99*100)]
=(1/2)[1/(1*2)]-(1/2)[1/(2*3)]+(1/2)[1/(2*3)]-(1/2)[1/(3*4)]+...+(1/2)[1/(98*99)]-(1/2)[1/(99*100)]
中间的全部互相抵消,所以
=(1/2)[1/(1*2)]-(1/2)[1/(99*100)]
=4949/19800
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询