高中数学竞赛题
有集合A{1,2,3……100}。若有集合X包含于A,记X中各元素之和为Sx,求所有的Sx之和。不是A中所有的元素之和!看清楚题目!!一共有2的100次方个集合X...这...
有集合A{1,2,3……100}。若有集合X包含于A,记X中各元素之和为Sx,求所有的Sx之和。
不是A中所有的元素之和!看清楚题目!!
一共有2的100次方个集合X...这么多的Sx怎么求? 展开
不是A中所有的元素之和!看清楚题目!!
一共有2的100次方个集合X...这么多的Sx怎么求? 展开
展开全部
在2的100次方个集合X中,集合A里面的每一个元素出现的次数是一样多的
拿元素1举例吧
空集不包含元素
只含有一个元素的集合,只有一个1=C0 /99 个 (组合数)
包含两个元素的集合,其中有元素1的的集合一共有99=C1 /99个
包含三个元素的集合,其中有元素1的集合一共有C2 /99
包含四个元素的结合,其中有元素1的集合一共有 C3 /99个
。。。。。。。。。。。。。。。。。。。
包含100个元素的集合,其中有元素1的集合有 C99 /99个
所以在这些集合中,1出现的次数为 C0 /99 +C1 /99 +C2 /99 +...+C99 99=2^99 次
每个元素出现的次数一样多
所以 所有的Sx之和为 2^99 ×(1+2+3+...+100)=5050×2^99
拿元素1举例吧
空集不包含元素
只含有一个元素的集合,只有一个1=C0 /99 个 (组合数)
包含两个元素的集合,其中有元素1的的集合一共有99=C1 /99个
包含三个元素的集合,其中有元素1的集合一共有C2 /99
包含四个元素的结合,其中有元素1的集合一共有 C3 /99个
。。。。。。。。。。。。。。。。。。。
包含100个元素的集合,其中有元素1的集合有 C99 /99个
所以在这些集合中,1出现的次数为 C0 /99 +C1 /99 +C2 /99 +...+C99 99=2^99 次
每个元素出现的次数一样多
所以 所有的Sx之和为 2^99 ×(1+2+3+...+100)=5050×2^99
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我来试试吧...
这个其实不难的...
解:共有N=2^100个集合,对于A中的任意元素xi,在这N个集合中,出现与不出现的次数是一样的
因为对于出现xi的集合,去掉xi则构成与之不同的另一个集合,且其余元素全部相等
所以,xi出现了 2^99次..
故Sx=(1+2+...+100)2^99=10100*2^98
这个其实不难的...
解:共有N=2^100个集合,对于A中的任意元素xi,在这N个集合中,出现与不出现的次数是一样的
因为对于出现xi的集合,去掉xi则构成与之不同的另一个集合,且其余元素全部相等
所以,xi出现了 2^99次..
故Sx=(1+2+...+100)2^99=10100*2^98
追问
为什么任意元素在集合中出现和不出现的次数是一样的
为什么它出现了2^99次 只有一次没有 假定元素是1 那在X={2} X={3} 这不就超过一次没有了?
追答
它出现了2^99次 并不是只有一次没有。。。而是2^99次
比如 其他元素构成的集合是 S1, 那么{s1}{s1,xi}就是一对不同的集合...
S1不同,这一对就不同, 所以 出现和不出现是成对发生的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
楼主等等我,我会。我手机的,比较慢,我会修改答案的,别追问。
追问
好的 我等你的过程 希望能详细一点
追答
解:设Xi为A的一个子集,则C(A)(Xi)也必然是A的子集。那么,在A的子集中,对于任意一个Xi,必有一个Xj属于A,使得Xi并Xj=A。所以在2^100个子集中,恰好有2^99对子集,他们的元素之和均为(1+2+3...+100),所以,所有的Sx=(1+2+3...+100)*2^99=10100*2^98
我想这就是标准答案了,答案都是很有技巧的。
望采纳,谢谢。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
包含1的集合有2的100次方除以100,同理其他数字亦是,故总和为5.05×2¹ºº
追问
我没有懂你的意思 可以详细一点吗 我想要看过程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这2的100次方个集合中,因为{2,3,4....100}有2的99次方个子集.所以有2的99次方个中有1,2的99次方个中没有1.也就是1出现了2^99次.同理2,3,4...100.都出现了2^99次.所以Sx=(1+2+3+.....+100)*2^99=5050*2^99
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询