设A为3阶方阵, λ1, λ2, λ3是A的三个不同特征值,对应特征向量分别为α1,α2,α3,

令β=α1+α2+α3(1)证明β,Aβ,A^2β线性无关(2)若A^3β=3Aβ-2A^2β,求A的特征值,并计算行列式∣A+E∣急求拜托谢谢... 令β =α1+α2+α3
(1)证明β,Aβ,A^2β线性无关
(2)若A^3β=3Aβ-2A^2β,求A的特征值,并计算行列式∣A+E∣
急求 拜托 谢谢
展开
帐号已注销
2021-10-18 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:171万
展开全部

假设xβ+yAβ+zA^2β=0

x(α1+α2+α3)+y(λ1α1+λ2α2+λ3α3)+z(λ1^2α1+λ2^2α2+λ3^2α3)=0。

因为α1,α2,α3分属不同特征值,所以线性无关,所以x+λ1y+λ1^2z=0。

此齐次方程组系数行列式为范德蒙行列式,且λ1, λ2, λ3互不相同,因而不为0,从而方程组只有零解,即有x=y=z=0。

故β,Aβ,A^2β线性无关。

第一性质

线性变换的特征向量是指在变换下方向不变,或者简单地乘以一个缩放因子的非零向量。

特征向量对应的特征值是它所乘的那个缩放因子。

特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。

线性变换的主特征向量是最大特征值对应的特征向量。

特征值的几何重次是相应特征空间的维数。

kkhejun
2011-09-06 · TA获得超过585个赞
知道答主
回答量:152
采纳率:0%
帮助的人:236万
展开全部
(1)假设xβ+yAβ+zA^2β=0
即x(α1+α2+α3)+y(λ1α1+λ2α2+λ3α3)+z(λ1^2α1+λ2^2α2+λ3^2α3)=0
(x+λ1y+λ1^2z)α1+(x+λ2y+λ2^2z)α2+(x+λ3y+λ3^2z)α3=0
因为α1,α2,α3分属不同特征值,所以线性无关,所以
x+λ1y+λ1^2z=0
x+λ2y+λ2^2z=0
x+λ3y+λ3^2z=0
此齐次方程组系数行列式为范德蒙行列式,且λ1, λ2, λ3互不相同,因而不为0,从而方程组只有零解,即有x=y=z=0
故β,Aβ,A^2β线性无关。

(2)将Aβ=λ1α1+λ2α2+λ3α3,A^2β=λ1^2α1+λ2^2α2+λ3^2α3,A^3β=λ1^3α1+λ2^3α2+λ3^3α3代入等式,并结合α1,α2,α3线性无关可得:λi^3+2λi^2-3λi=0
解得λi=0或1或-3,此即为A的特征值
因为A一定相似于对角阵C,对角元素分别为0,1,-3,所以可设A=P^(-1)CP,
∣A+E∣=∣P^(-1)CP+P^(-1)EP∣=∣P^(-1)(C+E)P∣=∣C+E∣= 1*2*(-2)= -4
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
llfswb
2011-09-06 · TA获得超过1261个赞
知道小有建树答主
回答量:436
采纳率:100%
帮助的人:211万
展开全部
(1) 用定义,注意a1,a2,a3是线性无关的
(2)就是x^3+2x^2-3x=0.
追问
可不可以详细点,我有用  拜托
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式