设△ABC的外接圆的半径为R,证明a/sinA=b/sinB=c/sinC=2R .(A ,B C为三个角。a,b,c为三角对应的边)
展开全部
步骤1.在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB 同理,在△ABC中, b/sinB=c/sinC
步骤2.证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度 因为在同圆或等圆中同弧所对的圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。
CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB 同理,在△ABC中, b/sinB=c/sinC
步骤2.证明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度 因为在同圆或等圆中同弧所对的圆周角相等,所以∠D等于∠C. 所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。
追问
谢谢。
参考资料: http://zhidao.baidu.com/question/195851147.html?an=0&si=3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询