
函数f(x)=(1-x)/ax+Inx是(1,+∞)上是增函数,求正实数a的取值范围
展开全部
函数f(x)在〔1,+∞)上可导且为增函数,
故f’(x)=-1/ax^2+1/x
=(ax-1)/ax^2>0.
又x.>=1,
∴(ax-1)/a>0,
即x-1/a>0在〔1,+∞)上恒成立,而x-1/a是增函数。
故x-1/a>=( x-1/a)min=1-1/a>0,
得1/a<1,又a>0,
a的取值范围(1, +∞)。
故f’(x)=-1/ax^2+1/x
=(ax-1)/ax^2>0.
又x.>=1,
∴(ax-1)/a>0,
即x-1/a>0在〔1,+∞)上恒成立,而x-1/a是增函数。
故x-1/a>=( x-1/a)min=1-1/a>0,
得1/a<1,又a>0,
a的取值范围(1, +∞)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询