一个数学分析问题
ln((b的平方)(cosx的平方))的积分怎么求啊?上下限是从0到二分之派拜托啦(cosx)^2...
ln ((b的平方)(cosx的平方))的积分怎么求啊?上下限是从0到二分之派
拜托啦 (cosx)^2 展开
拜托啦 (cosx)^2 展开
3个回答
展开全部
∫ (0,π/2) ln (b²cos²x) dx
=∫ (0,π/2) [ln(b²)+ln(cos²x)]dx
=2xlnb|(0,π/2)+2∫(0,π/2)ln(cosx)dx
考虑第二项
∫(0,π/2)ln(cosx)dx
=∫(π/2,0)ln[cos(π/2-t)d(π/2-t)
=∫(0,π/2)ln(sint)dt
=∫(0,π/2)ln(sinx)dx
∴∫(0,π/2)ln(sinx)dx
=∫(0,π/2)ln(cosx)dx
=∫(0,π/4)ln(cosx)dx+∫(π/4,π/2)ln(cosx)dx
=∫(0,π/4)ln(cosx)dx+∫(π/4,0)ln[cos(π/2-t)]d(π/2-t)
=∫(0,π/4)ln(cosx)dx+∫(0,π/4)ln(sint)dt
=∫(0,π/4)ln(cosx)dx+∫(0,π/4)ln(sinx)dx
=∫(0,π/4) [ln(cosx)+ln(sinx)] dx
=∫(0,π/4) ln[(sin2x)/2] dx
=∫(0,π/4) [ln(sin2x)-ln2] dx
=(1/2)∫(0,π/4) ln(sin2x)d(2x)-(π/4)ln2
=(1/2)∫(0,π/2) ln(sint)dt-(π/4)ln2
=(1/2)∫(0,π/2) ln(sinx)dx-(π/4)ln2
∴∫(0,π/2)ln(sinx)dx
=∫(0,π/2)ln(cosx)dx
=-(π/2)ln2
于是∫ (0,π/2) ln (b²cos²x) dx
=2xlnb|(0,π/2)+2∫(0,π/2)ln(cosx)dx
=πlnb-πln2
=πln(b/2)
=∫ (0,π/2) [ln(b²)+ln(cos²x)]dx
=2xlnb|(0,π/2)+2∫(0,π/2)ln(cosx)dx
考虑第二项
∫(0,π/2)ln(cosx)dx
=∫(π/2,0)ln[cos(π/2-t)d(π/2-t)
=∫(0,π/2)ln(sint)dt
=∫(0,π/2)ln(sinx)dx
∴∫(0,π/2)ln(sinx)dx
=∫(0,π/2)ln(cosx)dx
=∫(0,π/4)ln(cosx)dx+∫(π/4,π/2)ln(cosx)dx
=∫(0,π/4)ln(cosx)dx+∫(π/4,0)ln[cos(π/2-t)]d(π/2-t)
=∫(0,π/4)ln(cosx)dx+∫(0,π/4)ln(sint)dt
=∫(0,π/4)ln(cosx)dx+∫(0,π/4)ln(sinx)dx
=∫(0,π/4) [ln(cosx)+ln(sinx)] dx
=∫(0,π/4) ln[(sin2x)/2] dx
=∫(0,π/4) [ln(sin2x)-ln2] dx
=(1/2)∫(0,π/4) ln(sin2x)d(2x)-(π/4)ln2
=(1/2)∫(0,π/2) ln(sint)dt-(π/4)ln2
=(1/2)∫(0,π/2) ln(sinx)dx-(π/4)ln2
∴∫(0,π/2)ln(sinx)dx
=∫(0,π/2)ln(cosx)dx
=-(π/2)ln2
于是∫ (0,π/2) ln (b²cos²x) dx
=2xlnb|(0,π/2)+2∫(0,π/2)ln(cosx)dx
=πlnb-πln2
=πln(b/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |