一道高中数学题 ,会的请立刻进,我很急,谢谢了

f(x)为R上的偶函数,当x大于等于0时,f(x)=ln(x+2)一,当x小于0时,求f(x)解析式二,当m属于r时,试比较f(m-1)与f(3-m)的大小三,求最小的整... f(x)为R上的偶函数,当x大于等于0时,f(x)=ln(x+2) 一,当x小于0时,求f(x)解析式 二,当m属于r时, 试比较f(m-1)与f(3-m)的大小 三,求最小的整数m(m大于等于-2)使得存在实数t,对任意的x属于[m,10]都有f(x+t)小于等于2ln|x+3| 展开
and狗a1e2997
2011-09-08 · TA获得超过8810个赞
知道大有可为答主
回答量:1405
采纳率:0%
帮助的人:1666万
展开全部

解:⑴、当x<0时,-x>0,所以f(-x)=ln(-x+2),

又f(x)为偶函数,所以f(-x)=f(x),代入上式得出

当x<0时,求f(x)=ln(-x+2);

⑵、对于偶函数,要比较y值大小,只要比较对应的x与对称轴的距离谁大谁小即可,所以本题只要比较|m-1|与|3-m|的大小,可以采取比较(m-1)²与(3-m)²的方法。

首先,易得出f(x)在x≥0时为增函数,在x<0时为减函数,

其次,因为(m-1)²-(3-m)²=4(m-2),所以

当m<2时,|m-1|<|3-m|,所以f(m-1)<f(3-m);

当m=2时,|m-1|=|3-m|,所以f(m-1)=f(3-m);

当m>2时,|m-1|>|3-m|,所以f(m-1)>f(3-m);

⑶、f(x)的表达式可合并写为f(x)=ln(|x|+2),所以由f(x+t)≤2ln|x+3|得

ln(|x+t|+2)≤2ln|x+3|,化简得

|x+t|+2≤(x+3)²

|x+t|≤x²+6x+7

记g(x)=|x+t|,h(x)=x²+6x+7,g(x)与h(x)的交点为M(x1,y1)、N(x2,y2),不妨设M在左N在右,记h(x)与x轴的交点为A、B,不妨设A在左B在右,易求得其横坐标为-3±√2,

在同一坐标系中作出g(x)与h(x)的图像。其中前者是一条折线,后者是抛物线。由于t值的变化,所以图像有三种情况。

由图可看出,要使g(x)≤h(x),只有x∈(-∞,x1)或x∈(x2,+∞),而x1≤-3-√2<10,所以要使在x∈[m,10],都有g(x)≤h(x),只有x∈(x2,+∞),故

m≥x2≥-3+√2

而m为整数,所以m的最小值为-1。

liyalin313
2011-09-08 · TA获得超过905个赞
知道小有建树答主
回答量:512
采纳率:0%
帮助的人:298万
展开全部
1, f(x)=ln(-x+2)
2,1<m<2时 f(3-m)大 2<m<3 时 m-1 大 m>3 3-m 大
3,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wjl371116
2011-09-08 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67434

向TA提问 私信TA
展开全部
f(x)为R上的偶函数,当x≧0时,f(x)=ln(x+2); 一,当x<0时,求f(x)解析式; 二,当m∈R时, 试比较f(m-1)与f(3-m)的大小; 三,求最小的整数m(m≧-2)使得存在实数t,对任意的x∈[m,10]都有f(x+t)≦2ln|x+3|
解:一。当x<0时,f(x)=ln(-x+2);
二。f(m-1)=ln(m+1);f(3-m)=ln(5-m).
由m+1>0,得m>-1........(1);由5-m>0,得m<5....(2);(1)∩(2)={m︱-1<m<5};
f(m-1)-f(3-m)=ln(m+1)-ln(5-m)=ln[(m+1)/(5-m)]
当(m+1)/(5-m)=-(m+1)/(m-5)>1,即1+(m+1)/(m-5)=(2m-4)/(m-5)=2(m-2)/(m-5)<0,
也就是2<m<5时,ln[(m+1)/(5-m)>0,此时f(m-1)>f(3-m);
当0<(m+1)/(5-m)<1,即-1<(m+1)/(m-5)<0时,ln[(m+1)/(m-5)]<0,此时f(m-1)<f(5-m);
下面解不等式:-1<(m+1)/(m-5)<0
由(m+1)/(m-5)+1=(2m-4)/(m-5)=2(m-2)/(m-5)>0,得-1<m<2(或m>5舍去).........①
由(m+1)/(m-5)<0,得-1<m<5.......②
①∩②={m︱-1<m<2}时,即-1<m<2时有f(m-1)<f(3-m);
当(m+1)/(5-m)=1,m+1=5-m,即m=2时,ln[(m+1)/(5-m)]=0,此时f(m-1)=f(3-m).
结论:2<m<5时,f(m-1)>f(3-m);-1<m<2时,f(m-1)<f(3-m);当m=2时,f(m-1)=f(3-m).
三,求最小的整数m(m≧-2)使得存在实数t,对任意的x∈[m,10]都有f(x+t)≦2ln|x+3|
解:f(x+t)=ln(x+t+2)≦ln(x+3)²,故有x+t+2≦(x+3)²,即有;
x²+x-t+7=(x+1/2)²-1/4-t+7=(x-1/2)²+27/4-t≧27/4-t≧0,故t≦27/4,于是得最小的整数m=6.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zhici055
2011-09-13 · TA获得超过647个赞
知道答主
回答量:464
采纳率:100%
帮助的人:258万
展开全部
1, f(x)=ln(-x+2) 2,1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式