杠杆原理
当一根杠杆再受外力的情况下时他是按照圆周运动的而外力的方向并没有改变只是因为他做圆周运动所以说改变了方向对么...
当一根杠杆再受外力的情况下时 他是按照圆周运动的 而外力的方向并没有改变 只是因为他做圆周运动 所以说 改变了方向 对么
展开
展开全部
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1· l1=F2·l2。式中,F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。 杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。 其中公式这样写:动力×动力臂=阻力×阻力臂,即F1×l1=F2×l2这样就是一个杠杆。 动力臂延伸
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (力臂 > 力距);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。 两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。 古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,就能撬起地球"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。 虽然今天杠杆原理在生活中有着广泛的运用,可是当问到使用杠杆为什么会省力时,对此人们未必能够给出一个正确完满的答复。究其原因,这主要是今天的物理教材对此至今仍然没有给出一个完整的正确的答案的必然结果。 譬如,今天物理教材说‘杠杆平衡的条件:动力×动力臂=阻力×阻力臂,或写做F1×L1=F2×L2’。——这也就是说,在动力和阻力不变的前提下,使用杠杆省力的条件是动力臂长过阻力臂。可是当进一步问:动力臂长过阻力臂为什么就能够省力?!对此往往就没有了下文,或者简单的回答到说这是自然规律而已。 其实,杠杆省力的真正原因之一,是动力臂的重量大于阻力臂的重量的自然结果。举个例子,假定杠杆是一根钢棒,其粗细和长度单位重量是均匀的,其1米长度的重量为10公斤,那么,当动力臂长2米而阻力臂长0.1米时,动力臂自身的重量是20公斤,而阻力臂自身的重量的是1公斤,这时在动力臂的末端不需用力,就可以轻松的让阻力臂抬起20公斤以上的物体。这是显而易见的事情。 为了反复说明上述观点,再举个例子:一根粗细均匀长10米的木质杠杆,其自重10公斤,在其2、8分界处设立支点。当在动力臂末端挂上2公斤重物时,根据阿基米德平衡公式,这时要使杠杆平衡,在阻力臂末端应该挂上8公斤的重物;可是,由于动力臂自重8公斤,而阻力臂自重只有2公斤,因此可以肯定,这时杠杆并不能保持平衡:16+8≠16+2;或者按其重心计算:16+4≠16+1。——由此可见,阿基米德杠杆原理的理论基础——平衡公式的确是存在严重缺陷的是缺少实际意义的。 阿基米德之所以会产生上述错误,究其思想根源,在于他始终都把杠杆看作是‘无重量的杆’(《论平面图形的平衡》)。可是,杠杆要发挥作用就必须具有一定强度;而杠杆有一定强度就必然会有一定重量;而杠杆有一定重量平衡公式就必须重新修改。这是顺理成章的事情。大家知道,平衡公式正确与否从来都没有经过实践的严格检验(事实上也不可能检验),因此,如何完善杠杆原理——平衡公式,希望有兴趣和有条件的网友能够共同努力。
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。 杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。 其中公式这样写:动力×动力臂=阻力×阻力臂,即F1×l1=F2×l2这样就是一个杠杆。 动力臂延伸
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (力臂 > 力距);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。 两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。 古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,就能撬起地球"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。 虽然今天杠杆原理在生活中有着广泛的运用,可是当问到使用杠杆为什么会省力时,对此人们未必能够给出一个正确完满的答复。究其原因,这主要是今天的物理教材对此至今仍然没有给出一个完整的正确的答案的必然结果。 譬如,今天物理教材说‘杠杆平衡的条件:动力×动力臂=阻力×阻力臂,或写做F1×L1=F2×L2’。——这也就是说,在动力和阻力不变的前提下,使用杠杆省力的条件是动力臂长过阻力臂。可是当进一步问:动力臂长过阻力臂为什么就能够省力?!对此往往就没有了下文,或者简单的回答到说这是自然规律而已。 其实,杠杆省力的真正原因之一,是动力臂的重量大于阻力臂的重量的自然结果。举个例子,假定杠杆是一根钢棒,其粗细和长度单位重量是均匀的,其1米长度的重量为10公斤,那么,当动力臂长2米而阻力臂长0.1米时,动力臂自身的重量是20公斤,而阻力臂自身的重量的是1公斤,这时在动力臂的末端不需用力,就可以轻松的让阻力臂抬起20公斤以上的物体。这是显而易见的事情。 为了反复说明上述观点,再举个例子:一根粗细均匀长10米的木质杠杆,其自重10公斤,在其2、8分界处设立支点。当在动力臂末端挂上2公斤重物时,根据阿基米德平衡公式,这时要使杠杆平衡,在阻力臂末端应该挂上8公斤的重物;可是,由于动力臂自重8公斤,而阻力臂自重只有2公斤,因此可以肯定,这时杠杆并不能保持平衡:16+8≠16+2;或者按其重心计算:16+4≠16+1。——由此可见,阿基米德杠杆原理的理论基础——平衡公式的确是存在严重缺陷的是缺少实际意义的。 阿基米德之所以会产生上述错误,究其思想根源,在于他始终都把杠杆看作是‘无重量的杆’(《论平面图形的平衡》)。可是,杠杆要发挥作用就必须具有一定强度;而杠杆有一定强度就必然会有一定重量;而杠杆有一定重量平衡公式就必须重新修改。这是顺理成章的事情。大家知道,平衡公式正确与否从来都没有经过实践的严格检验(事实上也不可能检验),因此,如何完善杠杆原理——平衡公式,希望有兴趣和有条件的网友能够共同努力。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询