复变函数怎样求导?
2个回答
展开全部
没有对复变函数定义过导数,因为没意义。
对于复变函数只有能不能解析的问题。
欧拉公式EXP(iX)=cosX+isinX实际上是变量X的复值函数,也就是所EXP(iX)是一元实变复值函数。
在专门的复变函数课本上,有推广的欧拉公式:
EXP(iZ)=cosZ+isinZ ,这里Z是复平面上任意一点。
函数EXP(iZ)是解析函数,可以对变量Z求导数(就像实变函数一样求导)。
在复变函数理论中
d(sinZ)/dZ=-cosZ ,d(cosZ)/dZ=sinZ
而d(EXP(iZ))/dZ =i*EXP(iZ)=sinZ-icosZ
所以d(cosZ+isinZ)/dZ=sinZ-icosZ
所以d(EXP(iZ))/dZ =d(cosZ+isinZ)/dZ是成立的。
EXP(iX)=cosX+isinX若看成 EXP(iZ)=cosZ+isinZ
在Z=X+i·0=X 即点(X,0)处的值
则
[d(EXP(iZ))/dZ ] |z=x = [d(cosZ+isinZ)/dZ] |z=x
就是i·EXP(iX)=sinX-icosX
对于复变函数只有能不能解析的问题。
欧拉公式EXP(iX)=cosX+isinX实际上是变量X的复值函数,也就是所EXP(iX)是一元实变复值函数。
在专门的复变函数课本上,有推广的欧拉公式:
EXP(iZ)=cosZ+isinZ ,这里Z是复平面上任意一点。
函数EXP(iZ)是解析函数,可以对变量Z求导数(就像实变函数一样求导)。
在复变函数理论中
d(sinZ)/dZ=-cosZ ,d(cosZ)/dZ=sinZ
而d(EXP(iZ))/dZ =i*EXP(iZ)=sinZ-icosZ
所以d(cosZ+isinZ)/dZ=sinZ-icosZ
所以d(EXP(iZ))/dZ =d(cosZ+isinZ)/dZ是成立的。
EXP(iX)=cosX+isinX若看成 EXP(iZ)=cosZ+isinZ
在Z=X+i·0=X 即点(X,0)处的值
则
[d(EXP(iZ))/dZ ] |z=x = [d(cosZ+isinZ)/dZ] |z=x
就是i·EXP(iX)=sinX-icosX
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询