1/(1-x^2)的不定积分怎么求?
4个回答
展开全部
∫1/(1-x^2)dx
=1/2∫[1/(1-x)+1/(1+x)]dx
=1/2[-ln(1-x)+ln(1+x)]+C
=1/2ln[(1+x)/(1-x)]+C
=1/2∫[1/(1-x)+1/(1+x)]dx
=1/2[-ln(1-x)+ln(1+x)]+C
=1/2ln[(1+x)/(1-x)]+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一题:令x=sinu,dx=cosudu (1-x 2;)^(3/2)=cos 3;u u=arcsinx ∴∫arcsinx/(1-x 2;)^(3/2) dx =∫ucosu/cos 3;u du =∫usec 2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/(1-x^2) = (1/2)[ 1/(1-x) + 1/(1+x) ]
∫ 1/(1-x^2) dx
= ∫ (1/2)[ 1/(1-x) + 1/(1+x) ] dx
= (1/2) ln | (1+x)/(1-x) | + C
∫ 1/(1-x^2) dx
= ∫ (1/2)[ 1/(1-x) + 1/(1+x) ] dx
= (1/2) ln | (1+x)/(1-x) | + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询