已知函数f(x)=cosx/2(根号3sinx/2+cosx/2)求函数f(x)的最小正周期及单调递增区间
2个回答
2011-09-09 · 知道合伙人教育行家
关注
展开全部
f(x) = cos(x/2) { √3 sin(x/2) + cos(x/2)}
= √3 sin(x/2) cos(x/2) + cos^2(x/2)
= √3/2 sinx + 1/2(cosx+1)
= √3/2 sinx + 1/2 cosx + 1
= sinxcos(π/6) + cosxsin(π/6) + 1
= sin(x+π/6) + 1
最小正周期=2π/1=2π
2kπ-π/2≤x+π/6<2kπ+π/2,即2kπ-2π/3≤x<2kπ+π/3,其中k∈Z时单调增
单调增区间【2kπ-2π/3,2kπ+π/3),其中k∈Z
第二问如果求cos(2派/3-2派),与条件f(x)=1无关:
cos(2派/3-2派) = cos(2派/3) = cos(派-派/3)= -cos(派/3) = -1/2
= √3 sin(x/2) cos(x/2) + cos^2(x/2)
= √3/2 sinx + 1/2(cosx+1)
= √3/2 sinx + 1/2 cosx + 1
= sinxcos(π/6) + cosxsin(π/6) + 1
= sin(x+π/6) + 1
最小正周期=2π/1=2π
2kπ-π/2≤x+π/6<2kπ+π/2,即2kπ-2π/3≤x<2kπ+π/3,其中k∈Z时单调增
单调增区间【2kπ-2π/3,2kπ+π/3),其中k∈Z
第二问如果求cos(2派/3-2派),与条件f(x)=1无关:
cos(2派/3-2派) = cos(2派/3) = cos(派-派/3)= -cos(派/3) = -1/2
展开全部
f(x)=cosx/2(√3sinx/2+cosx/2)
=2cosx/2(√3/2sinx/2+1/2cosx/2)
=2cosx/2cos(x/2-π/3)
=cos(x/2-x/2+π/3)cos(x/2+x/2-π/3)
=1/2cos(x-π/3)
最小正周期 T=2π/1=2π
当2kπ≤x-π/3≤2kπ+π时,即2kπ+π/3≤x+π/3≤2kπ+4π/3函数为单调减
单调减区间为[2kπ+π/3,2kπ+4π/3],
当2kπ+π≤x-π/3≤2kπ+2π时,函数为单调增,单调增区间为[2kπ+2π,2kπ+7π/3]
(2)∵f(x)=1
∴ 1/2cos(x-π/3)=1有矛盾
求cos(2派/3-2派)的值
=2cosx/2(√3/2sinx/2+1/2cosx/2)
=2cosx/2cos(x/2-π/3)
=cos(x/2-x/2+π/3)cos(x/2+x/2-π/3)
=1/2cos(x-π/3)
最小正周期 T=2π/1=2π
当2kπ≤x-π/3≤2kπ+π时,即2kπ+π/3≤x+π/3≤2kπ+4π/3函数为单调减
单调减区间为[2kπ+π/3,2kπ+4π/3],
当2kπ+π≤x-π/3≤2kπ+2π时,函数为单调增,单调增区间为[2kπ+2π,2kπ+7π/3]
(2)∵f(x)=1
∴ 1/2cos(x-π/3)=1有矛盾
求cos(2派/3-2派)的值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询