已知函数f(x)=4cosx*sin(x+π/6)-1
展开全部
f(x)=4cosx*sin(x+π/6)-1
=4cosx(sinx*√3/2+cosx*1/2)-1
=2√3sinxcosx+2(cosx)^2-1
=√3sin2x+cos2x
=2sin(2x+π/6)
①:w=2,T=2π/w=π
②:令t=2x+π/6,因为x∈[-π/6,π/4],推出t∈[-π/6,2π/3], 问题转化为求2sint在[-π/6,2π/3]的最大值和最小值,一画图,显然得到max=2,min=-1。这种问题,用这种方法是绝对不会错的。首先感谢楼上的人,我就不化简了,直接借用楼上化简的式子,但是关键部分的处理,楼上没有把这个思路写出来,等于就做了一个化简,就得到了答案。
=4cosx(sinx*√3/2+cosx*1/2)-1
=2√3sinxcosx+2(cosx)^2-1
=√3sin2x+cos2x
=2sin(2x+π/6)
①:w=2,T=2π/w=π
②:令t=2x+π/6,因为x∈[-π/6,π/4],推出t∈[-π/6,2π/3], 问题转化为求2sint在[-π/6,2π/3]的最大值和最小值,一画图,显然得到max=2,min=-1。这种问题,用这种方法是绝对不会错的。首先感谢楼上的人,我就不化简了,直接借用楼上化简的式子,但是关键部分的处理,楼上没有把这个思路写出来,等于就做了一个化简,就得到了答案。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用积化和差就行:2*sin(a)*cos(b)=sin(a+b)+sin(a-b)
f(x)=4sin(x+π/6)*cos(x)-1=2*(sin(2x+π/6)+2sin(π/6)-1=2*sin(2x+π/6)
所以T=π;当-π/6<=x<=π/4时,-π/6<=2x+π/6<=2π/3,
所以,f(x)_max=2*sin(π/2)=2,f(x)_min=2*sin(-π/6)=-1。
f(x)=4sin(x+π/6)*cos(x)-1=2*(sin(2x+π/6)+2sin(π/6)-1=2*sin(2x+π/6)
所以T=π;当-π/6<=x<=π/4时,-π/6<=2x+π/6<=2π/3,
所以,f(x)_max=2*sin(π/2)=2,f(x)_min=2*sin(-π/6)=-1。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询