高数:计算∫∫xyzdxdy,其中∑为球面x²+y²+z²=1的外侧 x≥0,y≥0
1个回答
展开全部
被积曲面关于xOy对称,被积函数关于z是奇函数,根据第二类曲面积分的对称性原理
原式=2∫∫xy√1-x²-y²dxdy (其中,被积区域为x²+y²=1, x,y≥0)
原式=2∫[0->π/2]∫[0->1]r³√1-r²drdθ=(π/2)∫[0->1]r²√1-r²dr²
=(π/2)[∫[0->1]√1-r²dr²-∫[0->1](1-r²)√1-r²dr²]
=(π/2)[(-2/3)(1-r²)^(3/2) | [0->1] - (-2/5)(1-r²)^(5/2) | [0->1] ]
=2π/15
原式=2∫∫xy√1-x²-y²dxdy (其中,被积区域为x²+y²=1, x,y≥0)
原式=2∫[0->π/2]∫[0->1]r³√1-r²drdθ=(π/2)∫[0->1]r²√1-r²dr²
=(π/2)[∫[0->1]√1-r²dr²-∫[0->1](1-r²)√1-r²dr²]
=(π/2)[(-2/3)(1-r²)^(3/2) | [0->1] - (-2/5)(1-r²)^(5/2) | [0->1] ]
=2π/15
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询