小学六年级奥数(牛吃草问题)
有一片牧草,每天以匀速的速度生长,现在派17人去割草,30天才能把草割完,如果派19人去割草,则24天就能割完。如果需要6天割完,需要派多少人去割草?...
有一片牧草,每天以匀速的速度生长,现在派17人去割草,30天才能把草割完,如果派19人去割草,则24天就能割完。如果需要6天割完,需要派多少人去割草?
展开
2011-09-10
展开全部
小学六年级奥数题:专题训练之牛吃草问题
1.牧场上长满牧草,每天牧草都匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天,那么,供25头吃几天?
2.牧场上有一片牧草,可供27头牛吃6周,或者供23头牛吃9周。如果牧草每周匀速生长,可供21头牛吃几周?
3.一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果10人淘水,3小时可淘完;5人淘水8小时可淘完。如果要求2小时淘完,要安排多少人?
4.有一片牧草,每天以均匀的速度生长,现在派17人去割草,30天才能把草割完,如果派19人去割草,则24天就能割完。如果需要6天割完,需要派多少人去割草?
5.有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完。这桶酒每天漏掉的酒可供几人喝一天?
6.一水库存水量一定,河水均匀入库。5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。若要6天抽干,需要多少台同样的抽水机?
7.有一牧场,17头牛30天可将草吃完,19头牛则24天可将草吃完.现有牛若干头,吃6天后卖了4头,余下的牛再吃2天便将草吃完,问有牛多少头(草每日匀速生长)?
8.一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天。如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?
9.一片草地,有15头牛吃草,8天可以把草全部吃光。如果起初这15头牛吃了2天后,又来了2头牛,则总共7天就可以把草吃完,如果起初这15头牛吃了2天后,又来了5头牛,则总共( )天可以把草吃完。假定草生长的速度不变,每头牛每天吃的草量相同。
10.(牛顿的牛吃草问题)有三片牧场,场上的草长的一样密,而且长的一样快。它们的面积为 公亩,10公亩和24公亩。12头牛4星期吃完第一块牧场原有的和4星期内新长出来的草,21头牛9星期吃完第二块牧场原有的和9星期内新长出来的草。问多少头牛才能在18星期吃完第三块牧场原有的和新长出来的草?
小学六年级奥数题:专题训练之工程应用题
1、打一份书稿,甲独打需30天,乙单独打需20天。甲、乙合打若干天后,甲停工休息,乙继续打了5天完成。甲打了多少天?
2、修一条路,甲队单独修20天可以修完,乙队单独修25天可以修完。现在两队合修,中途甲队休息3天,乙队休息若干天,这样一共用了15天才修完。乙队休息了几天?
3、搬运一个汽车的货物,甲需12天,乙需15天,丙需20天。有同样的装货汽车M和N,甲搬运M汽车的货物,乙同时搬运N汽车的货物。丙开始帮助甲搬运,中途又去帮助乙去搬运,最后同时搬完两个汽车的货物。丙帮助甲搬运了几小时?
4、一项工作,如果单独做,小张需10天完工,小李需12天完工,小王需15天完工。现在三人合作,中途小张先休息了1天,小李再休息3天,而小王一直工作到完工为止。这样一共用了几天时间?
5、甲、乙合做一项工程,20天完成。如果甲队做7天,乙队做5天,只能完成工程的1/3,两队单独做完任务各需多少天?
6、一件工作,甲先独做3天,然后与乙合做5天,这样才完成全工程的一半。已知甲、乙工作效率的比是3:4。如果由乙单独做,需要多少天才能完成?
7、一项工程,甲独做需15小时完成,乙独做需18小时,丙需20小时完成。如果先由甲工作1小时,然后由乙接替甲工作1小时,再由丙接替乙工作1小时,再由甲接替丙工作1小时,…,三人这样交替工作,那么完成全部工程,一共需要多少小时?
8、自来水公司的一个蓄水池,打开甲管,8小时可以将满池水排空,打开丙管,12小时可以将满池水排空。如果打开甲乙管,4小时可将水排空。如果打开乙、丙两管,要几小时可以将满池水排空?
9、英雄广场有一个喷水池,单开甲管1小时可以将喷水池注满,单开乙管30分钟可以将喷水池注满,两管同时开8又3/4小时后,可注水5又1/4吨,喷水池能装水多少吨?
10、加工一批零件,甲独做需6天完成,乙独做需8天完成,两人同时加工,完成任务时,甲比乙多做30个,这批零件共有多少个?
11、甲车从A站开往B站需10小时,乙车从B站开往A站需15小时,两车同时从两站相向开出,距中点40千米处相遇。两站相距多少千米?
12、一列客车和一列货车同时从甲站开往乙站,客车到达乙站后立即返回,在距乙站58千米处与乙相遇。已知甲行全程需9小时,乙行全程需15小时。求甲乙两站之间的距离。
13、甲、乙两车同时从天津开往上海,甲车先到上海后立即返回,返回后又行了全程的1/6后与乙车相遇,二车一共行了5又2/9小时,已知甲车每小时比乙车多行18千米。求天津到上海的距离。
14、两支粗细、长短不同的蜡烛,长的一支可以点6小时,短的一支可以点9小时,将它们同时点燃,两小时后,两支蜡烛所余下的长度正好相等。原来短蜡烛的长度是长蜡烛长度的几分之几
小学六年级奥数题:专题训练之比和比例应用题
例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人?
提示:单价比:成年人:儿童:残疾人=3:2:1
人数比:50:20:1
[练习]甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?
例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元。已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元。
提示:根据已知条件可先求三种商品的数量比。
[练习]一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克32.4元,混合前的酥糖每千克是多少元?
例3、A、B、C是三个顺次咬合的齿轮。当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少?
提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例。
习题:
1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少?
2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少?
3、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?
4、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个?
奥赛专题 -- 鸡兔同笼问题
[专题介绍]鸡兔同笼问题是指在应用题中给出了鸡和兔子的总头数和总腿数,求鸡和兔子各有多少只的一类问题。鸡兔同笼问题在解答过程中用到假设的思路,可以假设都是兔子,这样总腿数就比实际腿数要多,多出来的腿数就是把鸡当兔子多算的,因此再除以一只鸡比一只兔子少的腿数就可以求得鸡有多少只。也可以假设成都是鸡,这样就可以求得兔有多少只。
[经典例题]例1 鸡兔同笼,头共46,足共128,鸡兔各几只?
[分析] :如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:鸡有28只,免有18只。
[总结]:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:
鸡数=(每只兔脚数× 兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)
兔数=鸡兔总数-鸡数
当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
[分析]: 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?
假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:鸡与兔分别有80只和20只。
例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?
[分析1] 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。
结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年级一班、 二班、三班分别有44人、 49人和 42人。
[分析2] 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和42人。
例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
[分析] 我们分步来考虑:
①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。
③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(条) 10-9=1(条)
答:有9条小船,1条大船。
例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?
[分析] 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).
解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?
6×18=108(条)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蝉共有多少只?
18-5=13(只)
④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7只.
奥赛专题 -- 时钟问题
[专题介绍]钟面上有时针与分针,每针转动的速度是确定的。
分针每分钟旋转的速度: 360°÷60=6°
时针每分钟旋转的速度: 360°÷(12×60)=0.5°
在钟面上总是分针追赶时针的局面,或是分针超越时针的局面。这里的转动角度用度数来表示,相当于行走的路程。因此钟面上两针的运动是一类典型的追及行程问题。
[经典例题]例1 钟面上3时多少分时,分针与时针恰好重合?
分析 正3时时,分针在12的位置上,时针在3的位置上,两针相隔90°。当两针第一次重合,就是3时过多少分。在正3时到两针重合的这段时间内,分针要比时针多行走90°。而可知每分钟分针比时针多行走6-0.5=5.5(度)。相应的所用的时间就很容易计算出来了。
解 360÷12×3= 90(度)
90÷(6-0.5)= 90÷5.5≈16.36(分)
答 两针重合时约为3时16.36分。
例2 在钟面上5时多少分时,分针与时针在一条直线上,而指向相反?
分析 在正5时时,时针与分针相隔150°。然后随时间的消逝,分针先是追上时针,在此时间内,分针需比时针多行走150°,然后超越时针180°就成一条直线且指向相反了。
解 360÷12×5=150(度)
(150+ 180)÷(6— 0.5)= 60(分)
5时60分即6时正。
答 分针与时针在同一条直线上且指向相反时应是5时60分,即6时正。
例3 钟面上12时30分时,时针在分针后面多少度?
分析 要避免粗心的考虑:时针在分针后面180°。正12时时,分针与时针重合,相当于在同一起跑线上。当到12时30分钟时,分针走了180°到达6时的位置上。而时针在同样的30分钟内也在行走。实际上两针相隔的度数是在30分钟内分针超越时针的度数。
解 (6—0.5)×30=55×3=165(度)
答 时针在分针后面165度。
例4 钟面上6时到7时之间两针相隔90°时,是几时几分?
分析 从6时正作为起点,此时两针成180°。当分针在时针后面90°时或分针超越时针90°时,就是所求的时刻。
解 (180—90)÷(6—0.5)
=90 ÷5.5
≈16.36(分钟)
(180+ 90)÷(6— 0.5)
=270÷5.5
≈49.09(分钟)
答 两针相隔90°时约为6时16.36分,或约为6时49.09分。
1.牧场上长满牧草,每天牧草都匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天,那么,供25头吃几天?
2.牧场上有一片牧草,可供27头牛吃6周,或者供23头牛吃9周。如果牧草每周匀速生长,可供21头牛吃几周?
3.一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果10人淘水,3小时可淘完;5人淘水8小时可淘完。如果要求2小时淘完,要安排多少人?
4.有一片牧草,每天以均匀的速度生长,现在派17人去割草,30天才能把草割完,如果派19人去割草,则24天就能割完。如果需要6天割完,需要派多少人去割草?
5.有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完。这桶酒每天漏掉的酒可供几人喝一天?
6.一水库存水量一定,河水均匀入库。5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。若要6天抽干,需要多少台同样的抽水机?
7.有一牧场,17头牛30天可将草吃完,19头牛则24天可将草吃完.现有牛若干头,吃6天后卖了4头,余下的牛再吃2天便将草吃完,问有牛多少头(草每日匀速生长)?
8.一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天。如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?
9.一片草地,有15头牛吃草,8天可以把草全部吃光。如果起初这15头牛吃了2天后,又来了2头牛,则总共7天就可以把草吃完,如果起初这15头牛吃了2天后,又来了5头牛,则总共( )天可以把草吃完。假定草生长的速度不变,每头牛每天吃的草量相同。
10.(牛顿的牛吃草问题)有三片牧场,场上的草长的一样密,而且长的一样快。它们的面积为 公亩,10公亩和24公亩。12头牛4星期吃完第一块牧场原有的和4星期内新长出来的草,21头牛9星期吃完第二块牧场原有的和9星期内新长出来的草。问多少头牛才能在18星期吃完第三块牧场原有的和新长出来的草?
小学六年级奥数题:专题训练之工程应用题
1、打一份书稿,甲独打需30天,乙单独打需20天。甲、乙合打若干天后,甲停工休息,乙继续打了5天完成。甲打了多少天?
2、修一条路,甲队单独修20天可以修完,乙队单独修25天可以修完。现在两队合修,中途甲队休息3天,乙队休息若干天,这样一共用了15天才修完。乙队休息了几天?
3、搬运一个汽车的货物,甲需12天,乙需15天,丙需20天。有同样的装货汽车M和N,甲搬运M汽车的货物,乙同时搬运N汽车的货物。丙开始帮助甲搬运,中途又去帮助乙去搬运,最后同时搬完两个汽车的货物。丙帮助甲搬运了几小时?
4、一项工作,如果单独做,小张需10天完工,小李需12天完工,小王需15天完工。现在三人合作,中途小张先休息了1天,小李再休息3天,而小王一直工作到完工为止。这样一共用了几天时间?
5、甲、乙合做一项工程,20天完成。如果甲队做7天,乙队做5天,只能完成工程的1/3,两队单独做完任务各需多少天?
6、一件工作,甲先独做3天,然后与乙合做5天,这样才完成全工程的一半。已知甲、乙工作效率的比是3:4。如果由乙单独做,需要多少天才能完成?
7、一项工程,甲独做需15小时完成,乙独做需18小时,丙需20小时完成。如果先由甲工作1小时,然后由乙接替甲工作1小时,再由丙接替乙工作1小时,再由甲接替丙工作1小时,…,三人这样交替工作,那么完成全部工程,一共需要多少小时?
8、自来水公司的一个蓄水池,打开甲管,8小时可以将满池水排空,打开丙管,12小时可以将满池水排空。如果打开甲乙管,4小时可将水排空。如果打开乙、丙两管,要几小时可以将满池水排空?
9、英雄广场有一个喷水池,单开甲管1小时可以将喷水池注满,单开乙管30分钟可以将喷水池注满,两管同时开8又3/4小时后,可注水5又1/4吨,喷水池能装水多少吨?
10、加工一批零件,甲独做需6天完成,乙独做需8天完成,两人同时加工,完成任务时,甲比乙多做30个,这批零件共有多少个?
11、甲车从A站开往B站需10小时,乙车从B站开往A站需15小时,两车同时从两站相向开出,距中点40千米处相遇。两站相距多少千米?
12、一列客车和一列货车同时从甲站开往乙站,客车到达乙站后立即返回,在距乙站58千米处与乙相遇。已知甲行全程需9小时,乙行全程需15小时。求甲乙两站之间的距离。
13、甲、乙两车同时从天津开往上海,甲车先到上海后立即返回,返回后又行了全程的1/6后与乙车相遇,二车一共行了5又2/9小时,已知甲车每小时比乙车多行18千米。求天津到上海的距离。
14、两支粗细、长短不同的蜡烛,长的一支可以点6小时,短的一支可以点9小时,将它们同时点燃,两小时后,两支蜡烛所余下的长度正好相等。原来短蜡烛的长度是长蜡烛长度的几分之几
小学六年级奥数题:专题训练之比和比例应用题
例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人?
提示:单价比:成年人:儿童:残疾人=3:2:1
人数比:50:20:1
[练习]甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?
例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元。已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元。
提示:根据已知条件可先求三种商品的数量比。
[练习]一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克32.4元,混合前的酥糖每千克是多少元?
例3、A、B、C是三个顺次咬合的齿轮。当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少?
提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例。
习题:
1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少?
2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少?
3、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?
4、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个?
奥赛专题 -- 鸡兔同笼问题
[专题介绍]鸡兔同笼问题是指在应用题中给出了鸡和兔子的总头数和总腿数,求鸡和兔子各有多少只的一类问题。鸡兔同笼问题在解答过程中用到假设的思路,可以假设都是兔子,这样总腿数就比实际腿数要多,多出来的腿数就是把鸡当兔子多算的,因此再除以一只鸡比一只兔子少的腿数就可以求得鸡有多少只。也可以假设成都是鸡,这样就可以求得兔有多少只。
[经典例题]例1 鸡兔同笼,头共46,足共128,鸡兔各几只?
[分析] :如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:鸡有28只,免有18只。
[总结]:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:
鸡数=(每只兔脚数× 兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)
兔数=鸡兔总数-鸡数
当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
[分析]: 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?
假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:鸡与兔分别有80只和20只。
例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?
[分析1] 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。
结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年级一班、 二班、三班分别有44人、 49人和 42人。
[分析2] 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?
解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人)
49-5=44(人),49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和42人。
例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
[分析] 我们分步来考虑:
①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。
③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(条) 10-9=1(条)
答:有9条小船,1条大船。
例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?
[分析] 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).
解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?
6×18=108(条)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蝉共有多少只?
18-5=13(只)
④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7只.
奥赛专题 -- 时钟问题
[专题介绍]钟面上有时针与分针,每针转动的速度是确定的。
分针每分钟旋转的速度: 360°÷60=6°
时针每分钟旋转的速度: 360°÷(12×60)=0.5°
在钟面上总是分针追赶时针的局面,或是分针超越时针的局面。这里的转动角度用度数来表示,相当于行走的路程。因此钟面上两针的运动是一类典型的追及行程问题。
[经典例题]例1 钟面上3时多少分时,分针与时针恰好重合?
分析 正3时时,分针在12的位置上,时针在3的位置上,两针相隔90°。当两针第一次重合,就是3时过多少分。在正3时到两针重合的这段时间内,分针要比时针多行走90°。而可知每分钟分针比时针多行走6-0.5=5.5(度)。相应的所用的时间就很容易计算出来了。
解 360÷12×3= 90(度)
90÷(6-0.5)= 90÷5.5≈16.36(分)
答 两针重合时约为3时16.36分。
例2 在钟面上5时多少分时,分针与时针在一条直线上,而指向相反?
分析 在正5时时,时针与分针相隔150°。然后随时间的消逝,分针先是追上时针,在此时间内,分针需比时针多行走150°,然后超越时针180°就成一条直线且指向相反了。
解 360÷12×5=150(度)
(150+ 180)÷(6— 0.5)= 60(分)
5时60分即6时正。
答 分针与时针在同一条直线上且指向相反时应是5时60分,即6时正。
例3 钟面上12时30分时,时针在分针后面多少度?
分析 要避免粗心的考虑:时针在分针后面180°。正12时时,分针与时针重合,相当于在同一起跑线上。当到12时30分钟时,分针走了180°到达6时的位置上。而时针在同样的30分钟内也在行走。实际上两针相隔的度数是在30分钟内分针超越时针的度数。
解 (6—0.5)×30=55×3=165(度)
答 时针在分针后面165度。
例4 钟面上6时到7时之间两针相隔90°时,是几时几分?
分析 从6时正作为起点,此时两针成180°。当分针在时针后面90°时或分针超越时针90°时,就是所求的时刻。
解 (180—90)÷(6—0.5)
=90 ÷5.5
≈16.36(分钟)
(180+ 90)÷(6— 0.5)
=270÷5.5
≈49.09(分钟)
答 两针相隔90°时约为6时16.36分,或约为6时49.09分。
展开全部
设每人每天割草为1份
则:17×30×1=510份
19×24×1=456份
则每天草生长:(510-456)÷(30-24)=9份
原来牧场有草:510-9×30=240份
需要人:(6×9+240)÷6=49人
则:17×30×1=510份
19×24×1=456份
则每天草生长:(510-456)÷(30-24)=9份
原来牧场有草:510-9×30=240份
需要人:(6×9+240)÷6=49人
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设每人每天割草为1份
则:17×30×1=510份
19×24×1=456份
则每天草生长:(510-456)÷(30-24)=9份
原来牧场有草:510-9×30=240份
需要人:(6×9+240)÷6=49人
则:17×30×1=510份
19×24×1=456份
则每天草生长:(510-456)÷(30-24)=9份
原来牧场有草:510-9×30=240份
需要人:(6×9+240)÷6=49人
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设每人一天割草量为x,则30天割草为510x,24天割草456x,则6天长草54x,一天长9x
6天割完,则多长草54x,一开始有草510x-30*9x=240x
则完工时割草量为294x,一天割6x,则要人数294/6=49人
6天割完,则多长草54x,一开始有草510x-30*9x=240x
则完工时割草量为294x,一天割6x,则要人数294/6=49人
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
假设每人每天为1个单位
30*17=510
19*24=456
510-456=54
30-24=6(天)
54/6=9(每天生长量)
9*30=270
510-270=240(原来的存有量)或456-24*9=240
6*9=54
240+54=294
294/6=49(人)
30*17=510
19*24=456
510-456=54
30-24=6(天)
54/6=9(每天生长量)
9*30=270
510-270=240(原来的存有量)或456-24*9=240
6*9=54
240+54=294
294/6=49(人)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询