已知数列1/1x4,1/4x7,1/7x10……1/(3n-2)(3n+1)
已知数列1/1x4,1/4x7,1/7x10……1/(3n-2)(3n+1),又因为有一个运算技巧1/a1a2+1/a2a3……1/anan+1=1/a1-1/an+1,...
已知数列1/1x4,1/4x7,1/7x10……1/(3n-2)(3n+1), 又因为有一个运算技巧1/a1a2+1/a2a3……1/anan+1=1/a1-1/an+1 , 运用这个技巧解答
展开
展开全部
1/(1x4)+1/(4x7)+1/(7x10)+...+1/(3n-2)x(3n+1)]
=1/3*(1-1/4+1/4-1/7+......+1/(3n-2)-1/(3n+1))
=1/3*(1-1/(3n+1))
=1/3*(1-1/4+1/4-1/7+......+1/(3n-2)-1/(3n+1))
=1/3*(1-1/(3n+1))
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式=1/3(1-1/4+1/4-1/7+……+1/(3n-2)-1/(3n+1))
=1/3(1-1/(3n+1))
=n/3n+1
=1/3(1-1/(3n+1))
=n/3n+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/1x4+1/4x7+1/7x10+……+1/(3n-2)(3n+1),
=1/3(1-1/4)+1/3(1/4-1/7)+1/3(1/7-1/10)+...+1/3(1/(3n-2)-1/(3n+1))
=1/3((1-1/4+1/4-1/7+1/7-1/10+...+1/(3n-2)-1/(3n+1))
=1/3(1-1/(3n+1))
=1/3(3n/(3n+1))
=n/3n+1
=1/3(1-1/4)+1/3(1/4-1/7)+1/3(1/7-1/10)+...+1/3(1/(3n-2)-1/(3n+1))
=1/3((1-1/4+1/4-1/7+1/7-1/10+...+1/(3n-2)-1/(3n+1))
=1/3(1-1/(3n+1))
=1/3(3n/(3n+1))
=n/3n+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |