在正方形ABCD中,E是BC的中点,F为CD上一点,且 CF=1/4CD,试判断△AEF是否是直角三角形

首先设正方形的边长为4a,则CF=a,DF=3a,CE=BE=2a.根据勾股定理可求出AF,AE和EF的长度.如果它们三个的长度满足勾股定理,△AEF为直角三角形,否则不... 首先设正方形的边长为4a,则CF=a,DF=3a,CE=BE=2a.根据勾股定理可求出AF,AE和EF的长度.如果它们三个的长度满足勾股定理,△AEF为直角三角形,否则不是直角三角形.
解:设正方形的边长为4a,
∵E是BC的中点, CF=1/4CD,
∴CF=a,DF=3a,CE=BE=2a.
由勾股定理得:AF²=AD解:设正方形的边长为4a,
∵E是BC的中点, CF=14CD,
∴CF=a,DF=3a,CE=BE=2a.
由勾股定理得:AF2=AD解:设正方形的边长为4a,
∵E是BC的中点, CF=14CD,
∴CF=a,DF=3a,CE=BE=2a.
由勾股定理得:AF2=AD解:设正方形的边长为4a,
∵E是BC的中点, CF=14CD,
∴CF=a,DF=3a,CE=BE=2a.
由勾股定理得:AF2=AD²+DF²=16a²+9a²=25a²,EF²=CE²+CF²=4A²+a²=5a²,AE²=AB²+BE²=16a²+4a²=20a²,
∴AF²=EF²+AE²,
∴△AEF为直角三角形
可我算来算去,它都不是啊,是不是我哪步出现了问题呢?
由勾股定理得:AF2=AD解:设正方形的边长为4a,
∵E是BC的中点, CF=14CD,
∴CF=a,DF=3a,CE=BE=2a.
由勾股定理得:AF2=AD解:设正方形的边长为4a,
∵E是BC的中点, CF=14CD,
∴CF=a,DF=3a,CE=BE=2a.
打多了 这没用的
展开
克己容人
2011-09-10 · TA获得超过911个赞
知道答主
回答量:170
采纳率:0%
帮助的人:219万
展开全部
解:设正方形的边长为4a,
∵E是BC的中点, CF=1/4CD,
∴CF=a,DF=3a,CE=BE=2a.
由勾股定理得:AF²=AD.
由勾股定理得:AF2=AD²+DF²=16a²+9a²=25a²,EF²=CE²+CF²=4A²+a²=5a²,AE²=AB²+BE²=16a²+4a²=20a²,
∴AF²=EF²+AE²,
∴△AEF为直角三角形
这个证明就是对的啊
不懂可以追问
希望采纳谢谢
更多追问追答
追问
可是,5a2+20a2=25a2么?
追答
5a^2+20a^2=(5+20)a^2=25a^2啊
这个就是合并同类项的
澈丶丹
2011-09-10
知道答主
回答量:22
采纳率:0%
帮助的人:16.2万
展开全部
晕 你那个 AF=5a EF=根号5 AE=2根号5 你算算勾股定理 5*5=5+4*5 这不就是 直角三角形吗 还要那么乱干啥
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
墨棠华3S
2011-09-10 · TA获得超过838个赞
知道小有建树答主
回答量:463
采纳率:0%
帮助的人:316万
展开全部
证明是乱了点,不过没错呀
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式