高二等差数列问题。急急急!!

1.已知1/a,1/b,1/c成等差数列,且a+c,a-c,a+c-2b均为正数。求证:lg(a+c),lg(a-c),lg(a+c-2b)也成等差数列。2.已知1/b是... 1.已知1/a,1/b,1/c成等差数列,且a+c,a-c,a+c-2b均为正数。求证:lg(a+c),lg(a-c),lg(a+c-2b)也成等差数列。

2.已知1/b是1/a与1/c的等差中项,求证(a+c)/b是(b+c)/a与(a+b)/c的等差中项。

3。若1/(b+c),1/(a+c),1/(a+b)成等差数列,则求证a²,b²,c²也成等差数列。

请附上解题步骤谢谢!!
展开
jjsd2011
2011-09-22 · TA获得超过1.6万个赞
知道大有可为答主
回答量:1853
采纳率:100%
帮助的人:996万
展开全部
解:
1)1/a,1/b,1/c成等差数列,则2/b=1/a+1/c=(a+c)/ac,即ab+bc=2ac
lg(a+c)+lg(a+c-2b)
=lg(a+c)(a+c-2b)
=lg(a^2+c^2+2ac-2ab-2bc)
=lg(a^2+c^2+2ac-4ac)
=lg(a-c)^2
=2lg(a-c)
所以,lg(a+c),lg(a-c),lg(a+c-2b)也成等差数列。
2)1/b是1/a与1/c的等差中项,则2/b=1/a+1/c=(a+c)/ac,即ab+bc=2ac
(b+c)/a+(a+b)/c
=(bc+c^2+a^2+ab)/ac
=(c^2+a^2+2ac)/ac
=(a+c)^2/ac
=(a+c)*(2/b)
=2(a+c)/b
所以,(a+c)/b是(b+c)/a与(a+b)/c的等差中项
3)1/(b+c),1/(a+c),1/(a+b)成等差数列,
则2/(a+c)=1/(b+c)+1/(a+b)
=(a+2b+c)/(a+b)(b+c)
即a^2+2ac+c^2+2ab+2bc=2ab+2b^2+2ac+2bc
化简,得2b^2=a^2+c^2
所以,a²,b²,c²也成等差数列
frog1992
2011-09-10 · 超过30用户采纳过TA的回答
知道答主
回答量:116
采纳率:0%
帮助的人:43.7万
展开全部
用定义就能证出来 无语
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式