高中数列 已知数列{an}的首项a1=1 前n项和为Sn 且S(n+1)=2Sn+3n+1

已知数列{an}的首项a1=1前n项和为Sn且S(n+1)=2Sn+3n+11),设bn=an+3求数列{bn}的通项公式2),在(1)的条件下,设cn=log2(bn)... 已知数列{an}的首项a1=1 前n项和为Sn 且S(n+1)=2Sn+3n+1

1),设bn=an+3 求数列{bn}的通项公式
2),在(1)的条件下,设cn=log2(bn),若存在常数k,使不等式k>=(cn-1)/[(n+25)*cn]恒成立,求k 的最小值
展开
数星落影
2011-09-11 · 曾经的数竞党,喜欢解答数学题
数星落影
采纳数:379 获赞数:1528

向TA提问 私信TA
展开全部
S(n+1)=2Sn+3n+1
则S(n+1)-Sn=Sn+3n+1
即a(n+1)=Sn+3n+1
所以Sn=a(n+1)-3n-1
所以S(n-1)=an-3(n-1)-1
用上式减下式:Sn-S(n-1)=a(n+1)-an-3
即为an=a(n+1)-an-3
所以a(n+1)=2an+3
所以a(n+1)+3=2(an+3)
即b(n+1)=2bn
所以bn=2b(n-1)=2^2b(n-2)=......=2^(n-1)b1=4*2^(n-1)=2^(n+1)

cn=log2[2^(n+1)]=n+1
(cn-1)/[(n+25)*cn]=n/(n^2+26n+25)
=1/(n+26+25/n)
又n+25/n>=2√(n*25/n)=2*5=10
所以1/(n+26+25/n)最大值为1/36
所以k(min)=1/36
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式