如图,在RT三角形ABC中,∠ACB=90度,∠BCA=60度,DE垂直平分BC,垂足为D,交AB于点E,又点F在DE的延长线上
3个回答
展开全部
证明:∵DE垂直平分BC,
∴ED是△ABC的中位线.
∴BE=AE,FD∥AC.
Rt△ABC中,CE是斜边AB的中线,
∴CE=AE=AF.
∴∠F=∠5=∠1=∠2.
∴∠FAE=∠AEC.
∴AF∥EC.
又∵AF=EC,
∴四边形ACEF是平行四边形.
∴ED是△ABC的中位线.
∴BE=AE,FD∥AC.
Rt△ABC中,CE是斜边AB的中线,
∴CE=AE=AF.
∴∠F=∠5=∠1=∠2.
∴∠FAE=∠AEC.
∴AF∥EC.
又∵AF=EC,
∴四边形ACEF是平行四边形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:
∵DE⊥BC ,∠ACB=90°
∴DE∥AC ∠BAC=∠BED=∠FEA=60°
∵BD=DC DE∥AC
∴BE=EA
∴在Rt△ABC中CE=EA=BE
∵在△AEC中,∠BAC=60° CE=EA
∴△AEC为等边三角形,即CE=AC
∵在△AEF中,∠FEA=60° CE=EA=AF
∴△AEF为等边三角形,即FE=AF
∵在四边形ACEF中FE=AF=AC=CE
∴四边形ACEF为菱形
∵DE⊥BC ,∠ACB=90°
∴DE∥AC ∠BAC=∠BED=∠FEA=60°
∵BD=DC DE∥AC
∴BE=EA
∴在Rt△ABC中CE=EA=BE
∵在△AEC中,∠BAC=60° CE=EA
∴△AEC为等边三角形,即CE=AC
∵在△AEF中,∠FEA=60° CE=EA=AF
∴△AEF为等边三角形,即FE=AF
∵在四边形ACEF中FE=AF=AC=CE
∴四边形ACEF为菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询