设集合P={1,x+y,xy},Q={x²+y²,x²-y²,0},若P=Q,求x+y的值
展开全部
P=Q,则P与Q有相同的元素
因为1不等于0,对应0的P中的元素或是x+y或是xy
假设x+y = 0,则x²-y² = (x+y)(x-y) = 0
Q中元素有两个0,因此xy = 0 x²+y² = 1
所以 x²+2xy+y² = (x+y)² = 1 x + y = 1
这与假设矛盾,所以有xy = 0
因此,考察{1,x+y}与{x²+y²,x²-y²}
此时有x²+y² = x²+2xy+y² = x²-2xy+y² = (x+y)² = (x-y)²
若x+y = x²+y² = (x+y)² ,则有x+y = 0 或 x+y = 1
当x+y = 0时,x²-y² = (x+y)(x-y) = 0,因为P中有一个1,而Q全为0,所以不符,因此x+y = 1
若x+y = x²-y² = (x+y)(x-y) ,则1 = x²+y² = (x+y)² = (x-y)²
因此x-y = 1,x + y = 1
综上,x + y = 1
因为1不等于0,对应0的P中的元素或是x+y或是xy
假设x+y = 0,则x²-y² = (x+y)(x-y) = 0
Q中元素有两个0,因此xy = 0 x²+y² = 1
所以 x²+2xy+y² = (x+y)² = 1 x + y = 1
这与假设矛盾,所以有xy = 0
因此,考察{1,x+y}与{x²+y²,x²-y²}
此时有x²+y² = x²+2xy+y² = x²-2xy+y² = (x+y)² = (x-y)²
若x+y = x²+y² = (x+y)² ,则有x+y = 0 或 x+y = 1
当x+y = 0时,x²-y² = (x+y)(x-y) = 0,因为P中有一个1,而Q全为0,所以不符,因此x+y = 1
若x+y = x²-y² = (x+y)(x-y) ,则1 = x²+y² = (x+y)² = (x-y)²
因此x-y = 1,x + y = 1
综上,x + y = 1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询