已知数列{an}的前n项和Sn=3+(2^n),求an
展开全部
Sn=3+2^n
a1=S1=3+2=5
n>=2时:
an=Sn-S(n-1)=3+2^n-(3+2^(n-1))=2^n-2^n/2=2^(n-1)
而a1=2^(1-1)=1不等于5
所以有:
a1=5,(n=1)
an=2^(n-1),(n>=2)
a1=S1=3+2=5
n>=2时:
an=Sn-S(n-1)=3+2^n-(3+2^(n-1))=2^n-2^n/2=2^(n-1)
而a1=2^(1-1)=1不等于5
所以有:
a1=5,(n=1)
an=2^(n-1),(n>=2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a1=S1=3+2=5
Sn=3+(2^n)
S(n+1)=3+[2^(n+1)]
a(n+1)=S(n+1)-Sn
=2^n
an=2^(n-1) 经检验n>1时成立。
a1=5
an=2^(n-1),(n>1)
Sn=3+(2^n)
S(n+1)=3+[2^(n+1)]
a(n+1)=S(n+1)-Sn
=2^n
an=2^(n-1) 经检验n>1时成立。
a1=5
an=2^(n-1),(n>1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询