如何解一元三次方程?f(x)=x^3-4X+x-4 , f(x)=x^3+11x^2+39x+29 , f(x)=x^3+10x^2+33x+34.
最好能附上详细的解法,因为这是国外微积分课程的作业,sopleasegivemeahand,thanks........是要求当f(x)=0时x的值,谢谢~~...
最好能附上详细的解法,因为这是国外微积分课程的作业,so please give me a hand ,thanks........
是要求当f(x)=0时x的值,谢谢~~ 展开
是要求当f(x)=0时x的值,谢谢~~ 展开
2个回答
展开全部
如果是正常的作业,那通常都是可以有理分解的,对首项系数为1的方程,若有有理根,则必为整根,且根为常数项的因数。通常先采用试根法先找到一个整数根,再用长除法或拆分法分解因式即可。
1)4的因数为±1,±2,±4。经试f(4)=0,
f(x)=x^3-4x^2+x-4=(x-4)(x^2+1)=0
x=4, i, -i
2) 29的因数为±1,±29。经试f(-1)=0
f(x)=x^3+x^2+10x^2+10x+29x+29=(x+1)(x^2+10x+29)=0
x=-1, -5+2i,-5-2i.
3) 34的因数为±1,±2,等。经试f(-2)=0
f(x)=x^3+2x^2+8x^2+16x+17x+34=(x+2)(x^2+8x+17)=0
x=-2, -4+i, -4-i
1)4的因数为±1,±2,±4。经试f(4)=0,
f(x)=x^3-4x^2+x-4=(x-4)(x^2+1)=0
x=4, i, -i
2) 29的因数为±1,±29。经试f(-1)=0
f(x)=x^3+x^2+10x^2+10x+29x+29=(x+1)(x^2+10x+29)=0
x=-1, -5+2i,-5-2i.
3) 34的因数为±1,±2,等。经试f(-2)=0
f(x)=x^3+2x^2+8x^2+16x+17x+34=(x+2)(x^2+8x+17)=0
x=-2, -4+i, -4-i
展开全部
一、卡尔丹公式法 特殊型一元三次方程X^3+pX+q=0 (p、q∈R)。 判别式Δ=(q/2)^2+(p/3)^3。 卡尔丹公式 X1=(Y1)^(1/3)+(Y2)^(1/3); X2= (Y1)^(1/3)ω+(Y2)^(1/3)ω^2; X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω, 其中ω=(-1+i3^(1/2))/2; Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2)。 标准型一元三次方程aX ^3+bX ^2+cX+d=0,(a,b,c,d∈R,且a≠0)。 令X=Y—b/(3a)代入上式。 可化为适合卡尔丹公式直接求解的特殊型一元三次方程Y^3+pY+q=0。 卡尔丹判别法 当Δ=(q/2)^2+(p/3)^3>0时,方程有一个实根和一对共轭虚根; 当Δ=(q/2)^2+(p/3)^3=0时,方程有三个实根,其中有一个两重根; 当Δ=(q/2)^2+(p/3)^3<0时,方程有三个不相等的实根。
二、因式分解法
例如:解方程x^3-x=0 对左边作因式分解,得x(x+1)(x-1)=0,得方程的三个根:x1=0;x2=1;x3=—1。
三、一种换元法
对于一般形式的三次方程,先将方程化为x^3+px+q=0的特殊型。 令x=z—p/3z,代入并化简,得:z^3-p/27z+q=0。再令z=w,代入,得:w^2+p/27w+q=0.这实际上是关于w的二次方程。解出w,再顺次解出z,x。
四、导数求解法
利用导数,求的函数的极大极小值,单调递增及递减区间,画出函数图像,有利于方程的大致解答,并且能快速得到方程解的个数,此法十分适用于高中数学题的解答。 如f(x)=x^3+x+1,移项得x^3+x=-1,设y1=x^3+x,y2=-1, y1的导数y1'=3x^2+1,得y1'恒大于0,y1在R上单调递增,所以方程仅一个解,且当y1=-1时x在-1与-2之间,可根据f(x1)f(x2)<0的公式,无限逼近,求得较精确的解。
一般也就这几种方法适合学生了。其实还有很多。掌握着几种就够了。
二、因式分解法
例如:解方程x^3-x=0 对左边作因式分解,得x(x+1)(x-1)=0,得方程的三个根:x1=0;x2=1;x3=—1。
三、一种换元法
对于一般形式的三次方程,先将方程化为x^3+px+q=0的特殊型。 令x=z—p/3z,代入并化简,得:z^3-p/27z+q=0。再令z=w,代入,得:w^2+p/27w+q=0.这实际上是关于w的二次方程。解出w,再顺次解出z,x。
四、导数求解法
利用导数,求的函数的极大极小值,单调递增及递减区间,画出函数图像,有利于方程的大致解答,并且能快速得到方程解的个数,此法十分适用于高中数学题的解答。 如f(x)=x^3+x+1,移项得x^3+x=-1,设y1=x^3+x,y2=-1, y1的导数y1'=3x^2+1,得y1'恒大于0,y1在R上单调递增,所以方程仅一个解,且当y1=-1时x在-1与-2之间,可根据f(x1)f(x2)<0的公式,无限逼近,求得较精确的解。
一般也就这几种方法适合学生了。其实还有很多。掌握着几种就够了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询